Международный студенческий научный вестник. Мой научный блог Основные понятия теории моделирования

аканчивая изучение механики, познакомимся еще с одним методом исследования физических процессов - так называемым методом анализа размерностей. Рассмотрим задачу, ответ на которую нам хорошо известен: с какой скоростью упадет на землю тело, свободно падающее без начальной скорости с некоторой высоты /г, если сопротивлением воздуха можно пренебречь? Вместо того, чтобы непосредственно определять эту скорость, пользуясь соотношениями кинематики, попробуем рассуждать следующим образом. От чего вообще может зависеть эта скорость? Довольно очевидно, что от высоты h и от ускорения свободного падения g она непременно должна зависеть. Поколебавшись, мы можем включить в число величин, от; которых зависит скорость падения, и массу тела т, хотя вообще-то легко сообразить, что от массы зависимости быть не должно. Итак, предположим, что скорость падения зависит от h, g и т: v=f(h, g, т). (16.1) Какой вид может иметь функция /? Ответить на этот вопрос можно с помощью анализа размерностей. В любой системе единиц имеется несколько физических величин, для которых единицы выбраны произвольно и считаются основными. В системе единиц СГС (а для механических величин и в СИ) в качестве основных выбраны единицы длины L, времени Т и массы М. Единицы всех остальных физических величин выражаются через основные. Например, единица скорости выражается через основные единицы длины и времени как LT~ . Выражение единицы любой физической величины в определенной системе единиц через основные единицы этой системы называется размерностью данной физической величины. Поскольку складывать можно только величины одинаковой размерности, то после некоторого раздумья можно для искомой функции / предложить такую формулу: v - Chxgymz, (16.2) где С--некоторое постоянное число (безразмерная постоянная), а х, у и z - неизвестные числа, которые следует определить. Теперь учтем то обстоятельство, что если формула (16.2) правильна, то размерность ее левой части должна совпадать с размерностью правой. Размерность скорости есть LT"1, размерность высоты h есть L, размерность ускорения свободного падения g равна LT~2, и, наконец, размерность массы m равна М. Поскольку постоянная С безразмерна, то муле (16.2) соответствует следующее равенство ^мерностей: 1 LT~1 - Lx , (16.24) гле С-некоторая постоянная. Сила сопротивления "Ропорциональна скорости движения тела, вязкости и линейному размеру тела в направлении движения, ^"а оказывается не зависящей от плотности жидкости и от поперечного сечения тела. При большей скорости определяющей становитс j не вязкость жидкости, а ее плотность. Для того чтобш сила сопротивления не зависела от вязкости, нуж^Г1 чтобы функция / стремилась к постоянному значению Формула (16.23) при этом принимает вид F=Cji;2pS, (16.25) где Ct - новая постоянная. Как и можно было ожидать из качественных соображений, сопротивление в этом! случае определяется поперечным сечением тела и це! зависит от размеров тела вдоль направления движения ВОПРОСЫ 1. Почему в состоянии равновесия жидкость действует на твердое" тело только по нормали к его поверхности? 2. Объясните, почему не опрокидывается корабль, центр тяжести! которого расположен вы!пе ватерлинии? 3. При каких условиях равновесие плавающего в полностью погруженном положении тела будет устойчивым? 4. Какие предположения" лежат в основе модели идеальной жидкости? Зависит ли применимость этой модели только от свойств самой жидкости? 5. В чем причина различия в показаниях манометра при разной ориентации его чувствительного элемента в потоке жидкости? 6. Получите выражения для скорости истечения жидкости из отверстия иглы шприца непосредственно с помощью закона сохранения энергии, не используя уравнения Бернулли. 7. Почему при рассмотрении явления гидравлического удара нельзя использовать модель несжимаемой жидкости? 8. Когда силу сопротивления движению тела в жидкости или I газе можно считать пропорциональной скорости, а когда квадрату, скорости? 9. Какую роль играет циркуляция воздуха вокруг крыла для возникновения подъемной силы? 10. Что можно сказать о возможностях и ограничениях методгй анализа размерностей? 11. Разъясните, каким образом введение «векторных едипиа¦ длины» расширяет возможности метода анализа размерностей, а

При решении задач по физике на любом уровне необычайно важно определить наиболее приемлемый метод или методы, а уж затем перейти к «техническому» воплощению. Учителя-виртуозы (мы сознательно употребили это выражение, так как считаем во многом схожим прочтение музыкального произведения музыкантами-импровизаторами и учителями-виртуозами, нашедшими собственные, авторские подходы в трактовке и толковании физических закономерностей) уделяют много времени предварительному обсуждению проблемы. Говоря другими словами, обсуждение метода зачастую не менее важно, чем решение задачи, поскольку происходит своеобразный обмен методиками, соприкосновение различных точек зрения, что, собственно, и является целью процесса обучения. Процесс подготовки к решению задачи во многом напоминает процесс подготовки актера к спектаклю. Обсуждение ролей, характеров героев, обдумывание интонаций, музыкальных реприз и художественных декораций являются важнейшими элементами погружения актера в роль. Не случайно, что многие известные театральные работники ценят подготовительный процесс и вспоминают атмосферу репетиций и собственные находки. В процессе преподавания учитель использует различные методы или «спектр методов». Одним из общих методов решения является решение задач методом размерности. Суть данного метода заключается в том, что искомая закономерность может быть представлена в виде произведения степенных функций физических величин, от которых зависит искомая характеристика. Важным моментом в решении является нахождение этих величин. Анализ размерностей левой и правой частей соотношения позволяет определить аналитическую зависимость с точностью до постоянного множителя.

Рассмотрим, например, от чего может зависеть давление в газе. Из повседневного опыта мы знаем, что давление является функцией температуры (увеличивая температуру, мы увеличиваем давление), концентрации (давление газа возрастет, если, не изменяя его температуры, мы поместим в данный объем большее число молекул). Естественно предположение о зависимости давления газа от массы молекул и их скорости. Понятно, что чем больше масса молекул, тем больше будет давление при прочих постоянных величинах. Очевидно, что при увеличении скоростей молекул давление будет возрастать. (Отметим, что все вышеизложенные рассуждения говорят о том, что все показатели степеней в окончательной формуле обязаны быть положительными!) Можно предположить, что давление газа находится в зависимости от его объема, однако если мы поддерживаем постоянной концентрацию молекул, то давление от объема не зависит. Действительно, в случае, если мы приведем в соприкосновение два сосуда с одинаковыми газами одной и той же концентрации, скоростями молекул, температурой и т.д., то, убрав перегородку, разъединяющую газы, мы не изменим давления. Таким образом, изменив объем, но оставив неизменным концентрацию и другие параметры, мы не изменили давления. Иначе говоря, мы не должны будем вводить объем в наши рассуждения. Казалось бы, что мы вправе строить функциональную зависимость, но, быть может, мы ввели избыточную информацию? Дело в том, что температура – это энергетическая характеристика тел, поэтому она связана с энергией молекул, т.е. является функцией массы и скорости молекул, составляющих тело. Поэтому, включая в наши предположения зависимости давления от концентрации, скоростей и массы молекул, мы уже «позаботились» о всех возможных зависимостях, которые в том числе могут включать и температуру. Говоря иными словами, искомая функциональная зависимость может быть записана в виде:

Здесь p – давление газа, т 0 – масса молекулы, n – концентрация, u – скорость молекулы.

Представим давление, массу, концентрацию, скорость в основных величинах интернациональной системы:

Зависимость (1) на языке размерностей имеет вид:

Сравнение размерности левой и правой части дает систему уравнений

Решая (4), получим а = 1; b = 1; с = 2. Давление газа теперь можно записать как

(5)

Обратим внимание на то, что коэффициент пропорциональности нельзя определить, используя метод размерностей, но, тем не менее, мы получили неплохое приближение к известному соотношению (основное уравнение мо-лекулярно-кинетической теории).

Рассмотрим несколько задач, на примере решения которых продемонстрируем суть метода размерностей.

Задача 1 . Оцените выражение для периода колебаний математического маятника, используя анализ размерностей. Предположим, что период колебаний маятника зависит от его длины, ускорения свободного падения и массы груза(!):

(6)

Представим все вышеупомянутые величины:

С учетом (7) перепишем искомую закономерность выражением

(8)

(9)

Теперь уже нетрудно записать систему уравнений:

Таким образом, ; с = 0.

(11)

Отметим, что «масса имеет нулевую размерность», т.е. период колебаний математического маятника не зависит от массы:

Задача 2 . Эксперименты показали, что скорость звука в газах зависит от давления и плотности среды. Сравните скорости звука в газе для двух состояний .

На первый взгляд кажется, что нам необходимо ввести в рассмотрение температуру газа, так как хорошо известно, что скорость звука зависит от температуры. Однако (сравните с рассуждением выше) давление может быть выражено как функция плотности (концентрации) и температуры среды. Поэтому одна из величин (давление, плотность, температура) является «лишней». Поскольку по условию задачи нам предлагается сравнить скорости разных давлений и плотностей, то разумно исключить из рассмотрения температуру. Отметим, что если бы нам надо было сделать сравнение для разных давлений и температур, то мы бы исключили плотность.

Скорость звука в условиях данной задачи может быть представлена

Соотношение (13) перепишем как

(14)

Из (14) имеем

Решение (15) дает .

Результаты экспериментов имеют следующую функциональную зависимость:

Скорость звука для двух состояний имеет вид:

(17)

Из (17) получим отношение скоростей

Задача 3 . На цилиндрический столб намотан канат. За один из концов каната тянут с силой F . Для того чтобы канат не скользил по столбу, когда на столб намотан лишь один виток, второй конец удерживается с силой f . С какой силой нужно удерживать этот конец каната, если на столб намотано n витков? Как изменится сила f , если выбрать столб вдвое большего радиуса? (Сила f не зависит от толщины каната.)

Совершенно очевидно, что сила f в данном случае может зависеть лишь от приложенной внешней силы F , коэффициента трения и диаметра столба. Математическую зависимость можно представить как

(19)

Поскольку коэффициент трения является величиной безразмерной, то (19) перепишем в виде

так как а = 1; с = 0 (a – коэффициент пропорциональности, связанный с μ). Для второго, третьего, ..., п -го намотанного витка запишем аналогичные выражения:

(21)

Подставляя α из (20) в (21), получим:

Хорошо известно, что «метод размерностей» зачастую с успехом применяется в гидродинамике и аэродинамике. В некоторых случаях он позволяет «оценить решение» достаточно быстро и с хорошей степенью надежности.

Совершенно понятно, что в данном случае сила сопротивления может зависеть от плотности жидкости, скорости потока и площади поперечного сечения тела:

(23)

Выполнив соответствующие преобразования, найдем, что

(24)

Как правило, соотношение (24) представляют в виде

(25)

где . Коэффициент с характеризует обтекаемость тел и принимает различные значения для тел: для шара с = 0,2 – 0,4, для круглого диска с = 1,1 – 1,2, для каплеобразного тела с » 0,04. (Яворский Б.М., Пинский А.А. Основы физики. – Т. 1. – М.: Наука, 1974.)

До сих пор мы рассматривали примеры, в которых коэффициент пропорциональности оставался безразмерной величиной, однако это не означает, что мы должны всегда следовать этому. Вполне возможно сделать коэффициент пропорциональности «размерным», зависящим от размера основных величин. Например, вполне уместно представить гравитационную постоянную . Говоря другими словами, наличие размерности у гравитационной постоянной означает, что ее численное значение зависит от выбора основных величин. (Здесь нам кажется уместным сделать ссылку на статью Д.В.Сивухина «О международной системе физических величин», УФН, 129, 335, 1975.)

Задача 5 . Определите энергию гравитационного взаимодействия двух точечных масс т 1 и т 2 , находящихся на расстоянии r друг от друга.

Помимо предложенного метода анализа размерностей, дополним решение задачи принципом симметрии входящих величин. Соображения симметрии дают основания считать, что энергия взаимодействия должна зависеть от т 1 и т 2 одинаковым образом, т.е. в окончательное выражение они должны войти в одинаковой степени:

(26)

Очевидно, что

Анализируя соотношение (26), найдем, что

а = 1; b = 1; с = –1,


(28)

Задача 6. Найдите силу взаимодействия между двумя точечными зарядами q 1 и q 2 , находящимися на расстоянии r .

Мы здесь можем воспользоваться симметрией, но если не хотим делать предположений о симметрии или не уверены в такой симметрии, то можно использовать другие методы. Данная статья написана для того, чтобы показать различные методы, поэтому мы решим задачу другим способом. Очевидна аналогия с предыдущей задачей, однако в данном случае можно воспользоваться принципом нахождения эквивалентных величин. Попытаемся определить эквивалентную величину – напряженность электрического поля заряда q 1 в точке нахождения заряда q 2 . Понятно, что искомая сила – это произведение q 2 на найденную напряженность поля. Поэтому будем предполагать зависимость напряженности от искомых величин в виде:

Представим все в основных единицах:

Проделав все преобразования, получим систему уравнений

Таким образом, а = –1; b = 1; с = –2, и выражение для напряженности принимает вид

Искомая же сила взаимодействия может быть представлена выражением

(33)

В соотношении (33) отсутствует безразмерный коэффициент 4π, который был введен по историческим причинам.

Задача 7. Определите напряженность гравитационного поля бесконечного цилиндра радиусом r 0 и плотностью r на расстоянии R (R > r 0) от оси цилиндра.

Поскольку мы не можем сделать предположений о равноправии r 0 и R , то решить данную задачу методом размерностей, не привлекая иных соображений, довольно трудно. Попытаемся понять физическую суть параметра r . Он характеризует плотность распределения массы, создающей интересующую нас напряженность поля. Если цилиндр сжать, оставив массу внутри цилиндра неизменной, то напряженность поля (на фиксированном расстоянии R > r 0) будет такой же. Иначе говоря, линейная плотность является более важной характеристикой, поэтому применим метод замены переменной. Представим . Теперь s является новой переменной в предложенной задаче, при этом:

a . Горизонтальная и вертикальная скорости и ускорение свободного падения принимают соответственно вид:

Построим математическую конструкцию для дальности и высоты полета:

(39)

Анализируя выражение (39), получим теперь

(40)

(41)

Данный метод является более сложным, однако хорошо работает, если имеется возможность различить величины, измеряемые одной и той же единицей измерения. Например: инерционная и гравитационная масса («инерционные» и «гравитационные» килограммы), вертикальное и горизонтальное расстояние («вертикальные» и «горизонтальные» метры), сила тока в одной и другой цепи и т.п.

Суммируя все вышеизложенное, отметим:

1. Метод размерностей может быть использован в случае, если искомая величина может быть представлена в виде степенной функции.

2. Метод размерностей позволяет качественно решить задачу и получить ответ с точностью до коэффициента.

3. В некоторых случаях метод размерностей является единственным способом решить задачу и хотя бы оценить ответ.

4. Анализ размерностей при решении задач широко используется в научных исследованиях.

5. Решение задач методом размерностей является дополнительным или вспомогательным методом, позволяющим лучше понять взаимодействие величин, их влияние друг на друга.

В случаях, когда изучаемые процессы не описываются дифференциальными уравнениями, одним из путей их анализа является эксперимент, результаты которого наиболее целесообразно представлять в обобщенной форме (в виде безразмерных комплексов). Методом составления таких комплексов является метод анализа размерностей.

Размерность какой-либо физической величины определяется соотношением между ней и теми физическими величинами, которые приняты за основные (первичные). В каждой системе единиц имеются свои основные единицы. Например, в Международной системе единиц измерения СИ за единицы измерения длины, массы и времени соответственно приняты метр (м), килограмм (кг), секунда (с). Единицы измерения остальных физических величин, так называемых производных величин (вторичных), принимаются на основании законов, устанавливающих связь между этими единицами. Эта связь может быть представлена в виде так называемой формулы размерности.

Теория размерностей основана на двух положениях.

  • 1. Отношение двух числовых значений какой-либо величины не зависит от выбора масштабов для основных единиц измерения (например, отношение двух линейных размеров не зависит от того, в каких единицах они будут измеряться).
  • 2. Любое соотношение между размерными величинами можно сформулировать как соотношение между безразмерными величинами. Это утверждение представляет так называемую П-теорему в теории размерностей.

Из первого положения следует, что формулы размерности физических величин должны иметь вид степенных зависимостей

где – размерности основных единиц.

Математическое выражение П-теоремы можно получить, исходя из следующих соображений. Пусть некоторая размерная величина а 1 является функцией нескольких независимых между собой размерных величин , т.е.

Отсюда следует, что

Допустим, что число основных размерных единиц, через которые могут быть выражены все п переменных величин, равно т. П-теорема устанавливает, что если все п переменных величин выразить через основные единицы, то их можно сгруппировать в безразмерных П-членов, т.е.

При этом каждый П-член будет содержатьпеременную величину.

В задачах гидромеханики число переменных, входящих в П-члены, должно равняться четырем. Три из них будут определяющими (обычно это характерная длина, скорость течения жидкости и ее плотность) – они входят в каждый из П-членов. Одна из этих переменных (четвертая) является различной при переходе от одного П-члена к другому. Показатели степени определяющих критериев (обозначим их через х, у , z) являются неизвестными. Показатель степени четвертой переменной для удобства примем равным -1.

Соотношения для П-члснов будут иметь вид

Входящие в П-члены переменные можно выразить через основные размерности. Так как эти члены являются безразмерными, то показатели степени каждой из основных размерностей должны быть равны нулю. В результате для каждого из П-членов можно составить по три независимых уравнения (по одному для каждой размерности), которые связывают показатели степени входящих в них переменных. Решение полученной системы уравнений дает возможность найти числовые значения неизвестных показателей степени х , у , z. В итоге каждый из П-членов определяется в виде формулы, составленной из конкретных величин (параметров среды) в соответствующей степени.

В качестве конкретного примера найдем решение задачи определения потерь напора на трение при турбулентном течении жидкости .

Из общих соображений можно заключить, что потеря давленияв трубопроводе зависит от следующих основных факторов: диаметра d , длины l , шероховатости стенок k, плотности ρ и вязкости µ среды, средней скорости течения v , начального напряжения сдвига, т.е.

(5.8)

Уравнение (5.8) содержит п=7 членов, а число основных размерных единиц. Согласно П-теореме получим уравнение, состоящее избезразмерных П-членов:

(5.9)

Каждый такой П-член содержит 4 переменные. Принимая в качестве основных переменных диаметр d , скорость v , плотность и комбинируя их с остальными входящими в уравнение (5.8) переменными, получаем

Составляя уравнение размерности для первого П-члена, будем иметь

Складывая показатели степени при одинаковых основаниях, находим

Для того чтобы размерность П 1 была равна 1 (П 1 – безразмерная величина), необходимо потребовать равенства нулю всех показателей степеней, т.е.

(5.10)

Система алгебраических уравнений (5.10) содержит три неизвестные величины x 1, у 1,z 1. Из решения этой системы уравнений находим x 1 = 1; у 1=1; z 1= 1.

Подставляя эти значения показателей степени в первый П-член, получаем

Аналогично для остальных П-членов будем иметь

Подставляя полученные П-члены в уравнение (5.9), находим

Решим это уравнение относительно П4:

Выразим отсюда :

Учитывая, что потери напора на трение равны разности пьезометрических напоров, будем иметь

Обозначив комплекс, находящийся в квадратных скобках, через, окончательно получим

Последнее выражение представляет известную формулу Дарси – Вейбаха, где

Формулы для расчета коэффициента трения к рассмотрены в параграфах 6.13, 6.14.

Физические величины, числовое значение которых не зависит от выбранного масштаба единиц, называются безразмерными. Примеры безразмерных величин - угол (отношение длины дуги к радиусу), показатель преломления вещества (отношение скорости света в вакууме к скорости света в веществе).

Физические величины, изменяющие свое числовое значение при изменении масштаба единиц, называются размерными. Примеры размерных величин - длина, сила и т. д. Выражение единицы физической величины через основные единицы называется ее размерностью (или формулой размерности). Например, размерность силы в системах СГС и СИ выражается формулой

Соображения размерности можно использовать для проверки правильности полученных ответов при решении физических задач: правые и левые части полученных выражений, как и отдельные слагаемые в каждой из частей, должны иметь одинаковую размерность.

Метод размерностей можно использовать и для вывода формул и уравнений, когда нам известно, от каких физических параметров может зависеть искомая величина. Сущность метода легче всего уяснить на конкретных примерах.

Применения метода размерностей. Рассмотрим задачу, ответ для которой нам хорошо известен: с какой скоростью упадет на землю тело, свободно падающее без начальной скорости с высоты если сопротивлением воздуха можно пренебречь? Вместо непосредственного вычисления на основе законов движения будем рассуждать следующим образом.

Подумаем, от чего вообще может зависеть искомая скорость. Очевидно, что она должна зависеть от начальной высоты и от ускорения свободного падения Можно предположить, следуя Аристотелю, что она зависит и от массы . Поскольку складывать можно только величины одинаковой размерности, то для искомой скорости можно предложить такую формулу:

где С - некоторая безразмерная постоянная (числовой коэффициент), а х, у и z - неизвестные числа, которые следует определить.

Размерность правой и левой частей этого равенства должна быть одинакова, и именно этим условием можно воспользоваться для определения показателей степени х, у, z в (2). Размерность скорости есть размерность высоты есть размерность ускорения свободного падения равна , наконец, размерность массы равна М. Поскольку постоянная С безразмерна, то формуле (2) соответствует следующее равенство размерностей:

Это равенство должно выполняться независимо от того, каковы числовые значения . Поэтому следует приравнять показатели степеней при и М в левой и правой частях равенства (3):

Из этой системы уравнений получаем Поэтому формула (2) принимает вид

Истинное значение скорости, как известно, равно

Итак, использованный подход позволил определить правильно зависимость от и и не дал возможности найти значение

безразмерной постоянной С. Хотя нам и не удалось получить исчерпывающего ответа, все же получена весьма существенная информация. Например, мы можем с полной определенностью утверждать, что, если начальную высоту увеличить в четыре раза, скорость в момент падения возрастет вдвое и что вопреки мнению Аристотеля эта скорость не зависит от массы падающего тела.

Выбор параметров. При использовании метода размерностей следует в первую очередь выявить параметры, определяющие рассматриваемое явление. Это легко сделать, если известны описывающие его физические законы. В ряде случаев определяющие явление параметры можно указать и тогда, когда физические законы неизвестны. Как правило, для использования метода анализа размерностей нужно знать меньше, чем для составления уравнений движения.

Если число параметров, определяющих изучаемое явление, больше числа основных единиц, на которых построена выбранная система единиц, то, разумеется, все показатели степеней в предлагаемой формуле для искомой величины не могут быть определены. В этом случае полезно прежде всего определить все независимые безразмерные комбинации из выбранных параметров. Тогда искомая физическая величина будет определяться не формулой типа (2), а произведением какой-либо (самой простой) комбинации параметров, имеющей нужную размерность (т. е. размерность искомой величины), на некоторую функцию найденных безразмерных параметров.

Легко видеть, что в разобранном выше примере падения тела с высоты из величин и безразмерную комбинацию составить нельзя. Поэтому там формула (2) исчерпывает все возможные случаи.

Безразмерный параметр. Рассмотрим теперь такую задачу: определим дальность горизонтального полета снаряда, выпущенного в горизонтальном направлении с начальной скоростью из орудия, находящегося на горе высоты

В отсутствие сопротивления воздуха число параметров, от которых может зависеть искомая дальность, равно четырем: и т. Поскольку число основных единиц равно трем, то полное решение задачи методом размерностей невозможно. Найдем прежде всего все независимые безразмерные параметры у, которые можно составить из и

Этому выражению соответствует следующее равенство размерностей:

Отсюда получаем систему уравнений

которая дает и для искомого безразмерного параметра получаем

Видно, что единственный независимый безразмерный параметр в рассматриваемой задаче - это Теперь достаточно найти какой-либо параметр, имеющий размерность длины, например взять сам параметр для того чтобы написать общее выражение для дальности полета снаряда по горизонтали в виде

где - пока неизвестная функция безразмерного параметра Метод размерностей (в изложенном варианте) не позволяет определить эту функцию. Но если нам откуда-нибудь, например из опыта, известно, что искомая дальность пропорциональна горизонтальной скорости снаряда, то вид функции немедленно определяется: скорость должна входить в нее в первой степени, т. е.

Теперь из (5) для дальности полета снаряда получаем

что при совпадает с правильным ответом

Подчеркнем, что при таком способе определения вида функции нам достаточно знать характер экспериментально установленной зависимости дальности полета не от всех параметров, а только от какого-нибудь одного из них.

Векторные единицы длины. Но можно определить дальность (7) только из соображений размерности, если увеличить до четырех число основных единиц, через которые выражаются параметры и т. До сих пор при записи формул размерностей не делалось различий между единицами длины в горизонтальном и вертикальном направлении. Однако такое различие можно ввести, основываясь на том, что сила тяжести действует только по вертикали.

Обозначим размерность длины в горизонтальном направлении через а по вертикали - через Тогда размерность дальности полета по горизонтали будет размерность высоты будет размерность горизонтальной скорости будет а для ускорения

свободного падения получим Теперь, глядя на формулу (5), мы видим, что единственный способ получить правильную размерность в правой части заключается в том, чтобы считать пропорциональной Мы снова приходим к формуле (7).

Разумеется, имея четыре основные единицы и М, можно и непосредственно сконструировать величину нужной размерности из четырех параметров и

Равенство размерностей левой и правой частей имеет вид

Система уравнений для х, у, z и и дает значения и мы опять приходим к формуле (7).

Используемые здесь разные единицы длины по взаимно перпендикулярным направлениям иногда называют векторными единицами длины. Их применение существенно расширяет возможности метода анализа размерностей.

При использовании метода анализа размерностей полезно развить навыки до такой степени, чтобы не составлять систему уравнений для показателей степеней в искомой формуле, а подбирать их непосредственно. Проиллюстрируем это на следующей задаче.

Задача

Максимальная дальность. Под каким углом к горизонту следует бросить камень, чтобы дальность полета по горизонтали была максимальной?

Решение. Допустим, что мы «забыли» все формулы кинематики, и попытаемся получить ответ из соображений размерности. На первый взгляд может показаться, что метод размерностей здесь вообще неприменим, так как в ответ должна войти какая-то тригонометрическая функция угла бросания. Поэтому вместо самого угла а попробуем искать выражение для дальности Ясно, что без векторных единиц длины здесь не обойтись.

Сущность метода анализа целесообразности затрат основывается на том, что в процессе предпринимательской деятельности затраты по каждому конкретному направлению, а также по отдельным элементам, не имеют одинаковую степень риска. Другими словами, степень риска двух разных направлений деятельности одной и той же фирмы неодинакова; и степень риска по отдельным элементам затрат внутри одного и того же направления деятельности также неодинакова. Так, например, гипотетически занятие игорным бизнесом более рискованное по сравнению с производством хлеба и затраты, которые несет диверсифицированная фирма на развитие этих двух направлений своей деятельности, будут также отличаться по степени риска. Даже в том случае, если предположить, что размер затрат по статье «аренда помещений» будет одинаковым по обоим направлениям, то все равно степень риска будет выше в игорном бизнесе. Такая же ситуация сохраняется и с затратами внутри одного и того же направления. Степень риска по затратам, связанным с покупкой сырья (которое может быть доставлено не точно в указанный срок, его качество может не полностью соответствовать технологическим нормам или его потребительские свойства могут быть частично утеряны при хранении на самом предприятии и т. д.), будет выше, чем по затратам на заработную плату.

Таким образом, определение степени риска путем анализа целесообразности затрат ориентировано на идентификацию потенциальных зон риска. Такой подход целесообразен еще и с тех позиций, что дает возможность выявить «узкие места» в деятельности предприятия с точки зрения рискованности, а после разработать пути их ликвидации.

Перерасход затрат может произойти под влиянием всех видов рисков, о которых говорилось ранее во время их классификации.

Обобщив накопленный мировой и отечественный опыт анализа степени риска при помощи использования метода анализа целесообразности затрат, можно сделать вывод о необходимости использовать при таком подходе градацию затрат на области риска.

Для анализа целесообразности затрат состояние по каждому из элементов затрат должно быть разделено на области риска (табл. 4.1), которые представляют собой зону общих потерь, в границах которых конкретные потери не превышают предельного значения установленного уровня риска:

  • 1) область абсолютной устойчивости;
  • 2) область нормальной устойчивости;
  • 3) область неустойчивого состояния:
  • 4) область критического состояния;
  • 5) область кризисного состояния.

В области абсолютной устойчивости степень риска по рассматриваемому элементу затрат соответствует нулевому риску. Данная область характеризуется отсутствием каких-либо потерь при совершении предпринимательской деятельности с гарантированным получением плановой прибыли, размер которой теоретически не ограничен. Элемент затрат, который находится в области нормальной устойчивости, характеризуется минимальной степенью риска. Для данной области максимальные потери, которые может нести субъект предпринимательской деятельности, не должны превышать границы плановой чистой прибыли (т.е. той ее части, которая остается у субъекта хозяйствования после налогообложения и всех остальных выплат, которые производятся на данном предприятии из прибыли, например, выплата дивидендов). Таким образом, минимальная степень риска обеспечивает фирме «покрытие» всех ее издержек и получение той части прибыли, которая позволяет покрыть все налоги.

Как правило, в условиях рыночной экономики, как было показано ранее, направление, которое имеет минимальную степень риска, связано с тем, что государство является его основным контрагентом. Это может проходить в самых различных формах, из которых основными являются такие, как: осуществление операций с ценными бумагами правительства или муниципальных органов, участие в выполнении работ, финансируемых за счет государственного или муниципальных бюджетов и т.д.

Область неустойчивого состояния характеризуется повышенным риском, при этом уровень потерь не превышает размеры расчетной прибыли (т. е. той части прибыли, которая остается у предприятия после всех выплат в бюджет, уплаты процентов за кредит, штрафов и неустоек). Таким образом, при такой степени риска субъект предпринимательской деятельности рискует тем, что он в худшем случае получит прибыль, величина которой будет меньше ее расчетного уровня, но при этом будет возможность произвести покрытие всех своих издержек.

В границах области критического состояния, которой соответствует критическая степень риска, возможны потери в границах валовой прибыли (т. е. общей сумме прибыли, которая получена предприятием до произведения всех вычетов и отчислений). Такой риск является нежелательным, потому что при этом фирма рискует потерять не просто прибыль, а и не покрыть полностью свои издержки.

Недопустимый риск, который соответствует области кризисного состояния, означает принятие субъектом предпринимательской деятельности такой степени риска, которая предполагает наличие возможности не покрытия всех издержек фирмы, связанных с данным направлением ее деятельности.

Таблица 4.1 - Области деятельности предприятия.

После того, как рассчитан коэффициент b на основании данных прошлых периодов, каждая статья затрат. Анализируется по отдельности на предмет ее идентификации по областям риска и максимальным потерям. При этом степень риска всего направления предпринимательской деятельности будет соответствовать максимальному значению риска по элементам затрат. Преимущество данного метода состоит в том, что зная статью затрат, у которой риск максимальный, возможно найти пути его снижения (например, в том случае, если максимальная точка риска приходится на затраты, связанные с арендой помещения, то можно отказаться от аренды и купить его и т. п.)

Основной недостаток такого подхода к определению степени риска, так же как и при статистическом методе, состоит в том, что предприятие не анализирует источники происхождения риска, а принимает риск как целостную величину, таким образом, игнорируя его мультисоставляющие.