Что такое система разработки месторождения. Системы разработки нефтяных месторождений. Проверка знаний. Виды внутриконтурного заводнения

СИСТЕМЫ РАЗРАБОТКИ

Разработка – это научно-обоснованный процесс (комплекс работ) управления движением флюида в залежи нефти, газа или конденсата за счет:

Выбора объекта разработки;

Размещения скважин или выбора плотности сетки скважин;

Определения оптимального забойного давления;

Выбора природного режима эксплуатации залежи или необходимости применения метода искусственного воздействия на залежь;

Метода и агентаППД;

Использования определенных технологий разработки;

Определения градиента давления;

Комплекса мероприятий по контролю и регулированию процесса разработки.

Под системой разработки месторождения понимают совокупность технологических и технических мероприятий, обеспечивающих извлечение нефти, газа, конденсата и попутных компонентов из пластов и управление этим процессом.

В зависимости от количества, мощности, типов и фильтрационной характеристики коллекторов, глубины залегания каждого из продуктивных пластов, степени их гидродинамической сообщаемости и т.д. система разработки месторождения может предусматривать выделение в его геологическом разрезе одного, двух и более объектов разработки (эксплуатационных объектов).

При выделении на месторождении двух или более объектов для каждого из них обосновывается своя рациональная система разработки . Будучи увязанными между собой, системы разработки отдельных эксплуатационных объектов составляют рациональную систему разработки месторождения в целом .

Рациональной называют систему разработки, которая обеспечивает:

Потребности страны в нефти (газе);

Возможно более полное извлечение из пластов нефти, газа, конденсата и полезных попутных компонентов при наименьших затратах.

Вплоть до середины 40-х гг. разработка нефтяных месторождений осуществлялась только с использованием природной энергии залежей.

С середины 40-х гг. в результате открытия новых нефтегазоносных районов развитие нефтяной промышленности связывается в основном с освоением месторождений платформенного типа, которым свойственны большие размеры площадей нефтеносности, значительные глубины залегания основных продуктивных пластов и в большинстве случаев малоэффективный природный режим - упруговодонапорный, быстро переходящий в режим растворенного газа.

Ученые и производственники в сравнительно короткий срок обосновали теоретически и доказали на практике необходимость и возможность применения принципиально новых систем разработки с искусственным вводом в продуктивные нефтяные пласты дополнительной энергии путем нагнетания в них воды. Широкое распространение метода заводнения началось в середине 40-х гг. Первоначально он был внедрен на новых нефтяных месторождениях Башкирии и Татарии - Туймазинском, Ромашкинском, Шкаповском, Бавлинском и др., затем был распространен во всех нефтедобывающих районах страны на новых месторождениях с недостаточно эффективными природными режимами.

Применение заводнения позволило разрабатывать залежи нефти достаточно высокими темпами при значительно меньшем количестве скважин, ускорять вывод эксплуатационных объектов на высокие уровни добычи и увеличивать в среднем вдвое нефтеотдачу по сравнению с разработкой при малоэффективных режимах.

Системы разработки с заводнением обеспечивают наибольший эффект при разработке залежей маловязкой нефти, приуроченных к продуктивным пластам с умеренной неоднородностью и повышенной проницаемостью. При разработке залежей с ухудшенной геологопромысловой характеристикой (повышенная вязкость пластовой нефти, пониженная проницаемость пород-коллекторов) с помощью заводнения также достигается повышение коэффициента извлечения нефти почти в 2 раза по сравнению с его величиной при разработке на природном режиме, но абсолютные значения этого коэффициента не во всех случаях достаточно высоки.

По каждому из названных пунктов должны приниматься решения, наиболее полно отвечающие геологической характеристике эксплуатационного объекта. При этом по одним пунктам рекомендации могут быть даны однозначно уже по данным промыслово-геологических исследований, по другим - могут быть предложены две-три близкие рекомендации. На этой основе специалистами в области технологии разработки месторождений выполняются гидродинамические расчеты нескольких вариантов системы разработки. Варианты различаются сочетанием рекомендаций по пунктам, обоснованных по геологическим данным. Из них выбирают оптимальный вариант, соответствующий требованиям, предъявляемым к рациональноной системе разработки. Выбор оптимального варианта выполняют на основе сравнения динамики годовых технологических и экономических показателей разработки рассмотренных вариантов.

Исследования по обобщению опыта разработки нефтяных месторождении при вытеснении нефти водой, выполненные в разные годы и в разных масштабах, свидетельствуют о том, что основное влияние на динамику технико-экономических показателей разработки оказывает геологопромысловая характеристика объектов . Вместе с тем применение системы разработки, соответствующей геолого-физическим условиям, дает возможность в значительной мере снивелировать неблагоприятные геологопромысловые особенностн эксплуатационных объектов.

Обоснование выделения эксплуатационных объектов и оптимальных вариантов систем разработки каждого из них базируется на сформированной к началу проектных работ геологической модели каждой из залежей и месторождения в целом .

Геологическая модель залежи.

Обоснование выделения эксплуатационных объектов и оптимальных вариантов систем разработки каждого из них базируется на сформированной к началу проектных работ геологической модели каждой из залежей и месторождения в целом.

Геологическая модель представляет собой:

Комплекс промыслово-геологических графических карт и схем;

Цифровых данных;

Кривых, характеризующих зависимости между различными параметрами залежей,

А также словесное описание особенностей залежей (текстовая часть).

Среди графических карт и схем обязательны:

Сводный литолого-стратиграфический разрез месторождения;

Схемы детальной корреляции;

Структурные карты, отражающие тектоническое строение эксплуатационного объекта;

Карты поверхностей коллекторов объекта с нанесением начальных контуров нефтегазоносности;

Геологические профили по эксплуатационному объекту с отражением условий залегания нефти и газа;

Карты распространения коллекторов (для каждого пласта в отдельности);

Карты полной, эффективной, эффективной нефтенасыщенной и газонасыщенной мощности в целом по объекту и по отдельным пластам.

При специфических особенностях залежи приводятся необходимые дополнительные карты и схемы (схема обоснования положения ВНК и ГВК, карты распространения коллекторов разных типов, карта температуры, карта коэффициента светопоглощения, карта проницаемости и др.).

Цифровыми данными характеризуются:

Пористость,

Проницаемость,

Начальная нефте(газо)насыщенность пород-коллекторов;

Полная, эффективная, эффективная нефте(газо)насыщенная мощность;

Мощность проницаемых разделов между пластами;

Физико-химические свойства пластовых нефти, газа, конденсата, воды.

При этом для каждого параметра указываются: число определений разными методами и число исследованных скважин; интервалы значений; оценка неоднородности на всех иерархических уровнях; среднее значение по объекту в целом и по его частям.

К группе цифровых данных относятся также;

Статистические ряды распределения проницаемости; микро- и макронеоднородность пластов (соотношение объемов коллекторов разных типов, коэффициенты песчанистости, расчлененности, прерывистости, слияния и др.); термобарические условия; результаты проведенных в лабораторных условиях физико-гидродинамических исследований вытеснения нефти (газа) агентами, использование которых предполагается при разработке объекта.

К важнейшим цифровым данным, характеризующим геологическую модель месторождения, относятся:

Балансовые и извлекаемые запасы нефти, газа, конденсата, ценных попутных компонентов;

Размеры площади нефтеносности;

Ширина, длина и высота залежи;

Размеры частей залежи - чисто нефтяной, водонефтяной, нефтегазовой, нефтегазоводяной, газоводяной зон.

В числе кривых, характеризующих зависимости между параметрами, приводят:

Кривые зависимости физических свойств нефти и газа от давления и температуры,

Характеристику фазовых проницаемостей,

Зависимости коэффициента вытеснения от проницаемости.

В текстовой части геологической модели залежи описывается ее природный режим и на основе всех названных выше материалов излагаются основные геолого-физические особенности залежи, определяющие выбор технологических решений и системы разработки в целом, а также влияющие на ожидаемые показатели разработки.

Системы разработки нефтяных залежей

При естественных режимах.

К числу нефтяных залежей с эффективными природными режимами относят залежи с водонапорным и активным упруговодонапорным режимами.

Наиболее распространенный метод воздействия - заводнение - не приносит нужных результатов при вязкости нефти в пластовых условиях более 30-40 мПа×с, поскольку при этом в пласте не создается устойчивого фронта вытеснения нефти водой: последняя быстро перемещается по тонким наиболее проницаемым прослоям пласта, оставляя невыработанным основной объем залежи. Заводнение не может быть ос

Система разработки нефтяной залежи с использованием напора краевых вод. Систему применяют для нефтяных залежей пластового типа с природным водонапорным или активным упруговодонапорным режимом. Она предусматривает разбуривание залежи добывающими скважинами с расположением их в основном в чисто нефтяной части залежи замкнутыми (“кольцевыми”) рядами, параллельными внутреннему контуру нефтеносности. По возможности соблюдается шахматный порядок расположения скважин. Для продления безводного периода эксплуатации скважин расстояния между рядами скважин могут устанавливаться несколько большими, чем между скважинами в рядах. С этой же целью в скважинах внешнего ряда нижнюю часть нефтенасыщенной мощности пласта обычно не перфорируют. В скважинах внутренних рядов нефтенасыщенный пласт перфорируют по всей мощности. В процессе разработки происходит “стягивание” контуров нефтеносности, размеры залежи уменьшаются. Соответственно постепенно обводняются и выводятся из эксплуатации скважины внешнего кольцевого ряда, затем, через определенные этапы, - скважины последующих рядов.

Система разработки с использованием напора подошвенных вод. Систему применяют для нефтяных залежей массивного типа (обычно на всей или почти всей площади залежи подстилаются водой), которые обладают водонапорным или активным упруговодонапорным режимом. При разработке таких залежей вытеснение нефти водой сопровождается повсеместным подъемом ВНК, т.е. последовательно обводняются интервалы залежи, расположенные примерно на одних гипсометрических отметках; размеры залежи уменьшаются.

При высоте залежи, измеряемой десятками метров, скважины располагают равномерно и пласт в них перфорируют от кровли до некоторой условно принятой границы, отстоящей от ВНК на несколько метров. При высоте залежи, составляющей 200-300 м и более (что свойственно некоторым массивным залежам в карбонатных коллекторах), предпочтительнее располагать скважины по сетке, сгущающейся к центру залежи, выдерживая принцип равенства запасов нефти, приходящихся на одну скважину. При этом подход к вскрытию продуктивной части разреза в скважинах зависит от фильтрационной характеристики залежи. При низкой вязкости нефти - до 1-2 мПа×с, высокой проницаемости и относительно однородном строении продуктивной толщи возможно вскрытие в скважинах верхней части нефтенасыщенной мощности, поскольку в таких условиях нефть из нижней части может быть вытеснена к вскрытым интервалам. При низкой вязкости нефти и неоднородном строении пород-коллекторов или при повышенной вязкости нефти может быть реализовано последовательное вскрытие нефтенасыщенной мощности.

Система разработки с использованием энергии выделяющегося из нефти газа. Система применяется при режиме растворенного газа и предусматривает разбуривание эксплуатационного объекта обычно по равномерной сетке с перфорацией во всех скважинах всей нефтенасыщенной мощности.

Система разработки с совместным использованием напора пластовых вод и газа газовой шапки. Система разработки нефтяной части газонефтяной залежи предусматривает использование смешанного режима залежи и вытеснение нефти контурной водой и газом газовой шапки. При этой системе скважины располагают по равномерной сетке и перфорируют в них лишь часть нефтенасыщенной мощности со значительным отступлением от контактов.

Поскольку вода обладает лучшей отмывающей способностью по сравнению с газом, систему предпочтительнее применять для залежей с относительно небольшими газовыми шапками.

При значительном объеме нефтяной части залежи по сравнению с газовой шапкой более эффективное действие напора вод и уменьшение влияния газовой шапки проявляются при больших углах падения пластов и значительной высоте нефтяной части залежи, высоком пластовом давлении, повышенных значениях проницаемости и гидропроводности пород-коллекторов. В рассматриваемых условиях разработка залежи в значительной мере усложняется вследствие образования конусов газа и воды. Это необходимо учитывать при обосновании интервалов перфорации и дебитов скважин.

Система с использование напора пластовых вод при неподвижном ГНК. Система предусматривает обеспечение отбора нефти из нефтегазовой залежи (с потенциально смешанным природным режимом) только за счет внедрения пластовых вод при неизменном объеме газовой шапки. Стабилизация ГНК в начальном его положении обеспечивается регулированием давления в газовой шапке путем отбора из нее через специальные скважины строго обоснованных объемов газа, соответствующих темпам снижения давления в нефтяной части залежи. При такой системе разработки интервал перфорации в скважинах может быть расположен несколько ближе к ГНК по сравнению с его положением при совместном использовании напора вод и газа. Однако и здесь при выборе интервала перфорации следует учитывать возможность образования конусов газа и воды и необходимость продления периода безводной эксплуатации скважин в условиях подъема ВНК.


Похожая информация.


Для одного и того же месторождения можно назвать множество систем, отличающихся по числу добывающих скважин, по их расположению на структуре, по методу воздействия на продуктивные пласты и т. д., поэтому существует необходимость сформулировать понятие рациональной системы разработки. В качестве критериев рациональной системы разработки принимаются следующие основные положения.

· Рациональная система разработки должна обеспечить наименьшую степень взаимодействия между скважинами.

Минимальное взаимодействие между скважинами достигается увеличением расстояния между ними. С другой стороны, при увеличении расстояния между скважинами общее их число на месторождении уменьшается, что ведет к снижению суммарного дебита скважин. Кроме того, в условиях неоднородного пласта увеличение расстояния между скважинами может привести к тому, что часть нефтенасыщенных линз, полу линз или пропластков не будет охвачено скважинами и они не будут приобщены к разработке. Таким образом, наименьшее взаимодействие между скважинами не может служить единственным всеохватывающим критерием рациональности системы разработки.

· Рациональная система должна обеспечить наибольший коэффициент нефтеотдачи.

Максимальную нефтеотдачу можно достигнуть при полном охвате нефтепродуктивного пласта процессом вытеснения. Это условие, особенно в неоднородных пластах, можно выполнить при более тесном размещении скважин. Кроме того, так как наиболее высокие коэффициенты достигаются при водонапорном режиме, а естественные притоки воды чаще не обеспечивают высоких темпов разработки, то существует необходимость создания искусственного водонапорного режима закачкой воды или газа в пласт.

· Рациональная система разработки должна обеспечить минимальную себестоимость нефти.

Из рассмотренных в процессе проектирования нескольких вариантов разработки выбирается вариант, обеспечивающий наивысшую нефтеотдачу. Названные выше критерии хотя и правильно определяют ориентиры для выбора системы разработки, тем не менее, ни один из них не может быть принят за определяющий, так как они не учитывают потребность в добыче нефти. Поэтому, понятие рациональной системы разработки в окончательном виде формулируется так: рациональная система разработки должна обеспечить заданную добычу нефти при минимальных затратах и возможно больших коэффициентах нефтеотдачи.

Проектирование разработки заключается в подборе такого варианта, который бы отвечал требованиям рациональной системы разработки.

Приступая к проектированию разработки последовательно определяются исходные геолого-физические данные о нефтепродуктивном пласте и свойствах насыщающих его жидкостей и газов; выполняются гидродинамические расчеты по установлению технологических показателей разработки по нескольким вариантам, отличающимся по числу скважин, методу воздействия на продуктивные пласты, условиям эксплуатации скважин и т. д.; рассчитывается экономическая эффективность вариантов разработки; анализируются экономические и технологические показатели разработки и выбирается вариант рациональной системы разработки.

Внедрение рациональной системы разработки позволяет добиться высоких технико-экономических показателей при разработке месторождений.

Поскольку разработка месторождения начинается с отбора нефти из первых разведочных скважин, то можно отметить, что система разработки динамична и должна непрерывно совершенствоваться во времени.

Основные понятия и характеристики систем разработки

Под системой разработки месторождения понимается комплекс мероприятий по извлечению углеводородов из недр и уп­равлению этим процессом. Система разработки определяет количество эксплуатационных объектов, способы воздействия на плас­ты и темпы отбора углеводородов из них, размещение и плотность сетки добывающих и нагнетательных скважин, очередность ввода в разработку блоков и участков залежи, способы и режимы эксплуатации скважин, мероприятия по контролю и регулированию процесса разработки, охране недр и окружающей среды.

Системы разработки обосновываются в технологических про­ектных документах.

Под эксплуатационным объектом понимается про­дуктивный пласт, часть пласта или группа пластов, выделенных для разработки самостоятельной сеткой скважин. Пласты, объединяемые в один объект разработки, должны иметь близкие литологические характеристики и коллекторские свойства пород про­дуктивных пластов, физико-химические свойства и состав насы­щающих их флюидов, величины начальных приведенных пласто­вых давлений.

По признаку последовательности ввода отдельных объектов в эксплуатационное разбуривание могут быть выделены следующие системы разработки месторождений.

Система разработки «сверху вниз». Эта система заключается в том, что каждый пласт данного месторождения сначала вводится в разведку, а потом в эксплуатационное массовое разбуривание, но после того, как будет в основном разбурен вышележащий пласт (рис. 10).

Система разработки «сверху вниз» была органически связана с ударным бурением, при котором изоляция одного пласта от дру­гого в процессе бурения достигается не циркуляцией глинистого раствора, как при вращательном бурении, а путем спуска специ­альной колонны обсадных труб для изоляции каждого пласта. При технике ударного бурения эта система разработки была наиболее экономической и соответственно наиболее распростра­ненной. При современном состоянии науки и техники она не позволяет эффективно использовать имеющуюся технику бурения и данные электрометрических исследований скважин. Кроме того, она сильно задерживает темпы разработки и разведки место­рождений и в настоящее время не применяется.

Рис. 10. Схема разработки нефтяных месторождений.

а – по системе «сверху вниз», б – по системе «снизу вверх»

Система разработки «снизу вверх». Данная система заклю­чается в том, что в первую очередь разбуривается самый нижний из высокодебитных горизонтов (пластов). Горизонт, с которого начинается разработка, называется опорным (рис. 10).

Основные преимущества этой системы заключаются в следу­ющем:

1) одновременно с разведкой и разбуриванием опорного гори­зонта каротажем и отбором керна изучаются все вышележащие пласты, что намного сокращает число разведочных скважин, при этом освещается сразу строение всего месторождения;

2) уменьшается процент неудачных скважин, поскольку сква­жины, попавшие за контур залежи в опорном горизонте, могут быть возвращены эксплуатацией на вышележащие горизонты;

3) значительно возрастают темпы освоения нефтяных место­рождений;

4) сокращается число аварий при бурении, связанных с ухо­дом циркуляционного раствора в пласты - коллектора, а также значительно уменьшается глинизация пластов.

Система разработки этажами. Поэтажная система обычно применяется при разработке многопластовых месторождений, в разрезе которых имеются два-три и более выдержанных по простиранию и удаленных по разрезу продуктивных пласта.

По признаку последовательности разработки залежи рядами и ввода скважин в эксплуатацию системы разработки подразделя­ются на поэтапную и одновременную (сплошную).

При поэтапной системе разработки пласта сначала бурят два-три ряда скважин, ближайших к ряду нагнетательных скважин, оставляя при этом значительную часть пласта не разбуренной. Расчеты и опыт разработки месторождений подобным образом показывают, что бурение четвертого ряда скважин не повышает суммарного отбора нефти в силу интерференции скважин. Поэтому к бурению четвертого ряда приступают тогда, когда пер­вый ряд скважин обводнится и выйдет из эксплуатации. Пятый ряд бурят одновременно с выходом из эксплуатации второго ряда скважин и т. д.

Каждая замена внешнего ряда скважин внутренним называ­ется этапом разработки. Такая система разбуривания рядами в слу­чае разработки от контура к своду напоминает ползущую систему сплошного разбуривания по восстанию и отличается от нее тем, что в эксплуатации одновременно находятся не все скважины, а не более трех рядов.

При одновременной системе разработки залежь охва­тывается заводнением одновременно по всей площади.

Классификация разработки пластовых залежей по признаку воздействия, на пласт

Современному состоянию техники соответствует следующее деление методов разработки нефтяных залежей по признаку воз­действия на пласт:

1) метод разработки без поддержания пластового давления;

2) метод поддержания давления путем закачки воды;

3) метод поддержания давления путем закачки газа или воздуха;

4) вакуум-процесс;

5) компрессорно-циркуляционный метод разработки конденсатных месторождений;

6) метод внутрипластового горения;

7) метод циклической закачки пара.

Разработка без поддержания пластового давления применяется в тех случаях, когда давление краевых вод обеспечивает упруго-водо­напорный режим в залежи в течение всего времени эксплуатации или когда по тем или иным причинам экономически невыгодно организовывать закачку газа или воды в пласт.

В тех случаях, когда давление пластовых вод не может обес­печить упруго-водонапорного режима, разработка залежи без поддержания пластового давления обязательно приведет к проявлению режима растворенного газа, а стало быть к низкому коэффициенту использования запасов. В этих случаях необходимо искусственное поддержание пластового давления.

Если предполагается, что нефтяное месторождение будет разрабатываться в основной период при режиме растворенного газа, для которого характерно незначительное перемещение водонефтяного раздела, т. е. при слабой активности законтурных вод, то применяют равномерное, геометрически правильное расположение скважин по квадратной или треугольной сетке. В тех же случаях, когда предполагается определенное перемещение водонефтяного и газонефтяного разделов, скважины располагают с учетом положения этих разделов.

Метод поддержания давления путем закачки воды преследует цель поддерживать пластовое давление выше давления насыщения. Этим будет обеспечена разработка залежи при жестком водонапор­ном режиме. Последнее дает возможность разрабатывать залежь до извлечения 40 - 50% запасов преимущественно фонтанным способом с высокими темпами отбора жидкости и в конечном счете получать высокий коэффициент использования запасов – 60 - 70%.

Системы разработки с поддержанием пластового давления в свою очередь подразделяются на системы с законтурным, приконтурным и внутриконтурным воздействием.

Метод поддержания давления, при котором вода закачивается в законтурную область пласта, называется закон­турным заводнением. Законтурное заводнение рацио­нально применять при разработке относительно узких залежей (шириной не более 3-4 км), на которых размещается от трех до пяти рядов эксплуатационных скважин.

При разработке крупных залежей, когда закачка воды в за­контурную область не сможет обеспечить заданных темпов добычи и охватить влиянием скважины, расположенные внутри залежи, целесообразно применять внутриконтурное завод­нение. Раньше на заре развития методов поддержания давле­ния путем закачки воды применяли поэтапную систему разработки, которая представляла собою ползущую систему разработки по восстанию или по падению. В том и другом случае образовывалась законсервированная часть залежи, что крайне нежелательно. Поэтому при разработке крупных залежей в на­стоящее время применяют внутриконтурное заводнение .

Системы с внутриконтурным воздействием делятся на рядные, площадные, очаговые, избирательные, цетральные.

Внутриконтурное заводнение применяется такжепри разра­ботке литологических залежей , границы которых определяются замещением песчаников глинами. В этих случаях воду закачивают по оси залежи. Такое заводнение называется внутриконтурным по оси. Если же закачка производится в центре литологически ограниченной залежи через одну скважину, заводнение называ­ется очаговым. Практика показала эффективность такого заводнения литологических объектов, состоящих из большого числа линзообразных залежей.

С течением времени при очаговом заводнении соседние эксплуа­тационные скважины начинают обводняться, и после полного обводнения их переводят под нагнетание воды. Постепенно оча­говое заводнение превращается в центральное.

Центральным называется заводнение, которое производится через три-четыре скважины, расположенные в центре залежи.

Как правило, центральное заводнение через несколько скважин сразу в начале разработки на практике никогда не осуществляется.

В практике разработки крупных залежей применяются одно­временно законтурное, внутриконтурное по блокам и очаговое заводнения.

При разработке крупных залежей нефти платформенного типа в Западной Сибири применяют рядные системы разработки. Разновидность их - блоковые системы. При этих системах на месторождениях, обычно в направлении, поперечном их простиранию, располагают ряды добывающих и нагнетательных скважин. Практически применяют трехрядную и пятирядную схемы расположения скважин, представляющие собой соответственно чередование трех рядов добывающих и одного ряда нагнетательных скважин, пяти рядов добывающих и одного ряда нагнетательных скважин. При большем числе рядов (семь-девять) центральные ряды скважин не будут обеспечиваться воздействием от нагнетания вследствие их интерференции со скважинами крайних рядов.

Число рядов в рядных системах нечетное вследствие необходимости проводки центрального ряда скважин, к которому предполагается стягивать водонефтяной раздел при его перемещении в процессе разработки пласта. Поэтому центральный ряд скважин в этих системах часто называют стягивающим рядом.

Расстояние между рядами скважин обычно изменяется в пре­делах 400 - 600 м (реже до 800 м), между скважинами в рядах - в пределах 300 - 600 м.

При трехрядной системе за­лежь разрезается рядами нагнетательных скважин на ряд по­перечных полос шириною, равной четырехкратному расстоянию между рядами скважин. При пятирядной системе ширина полос равна шестикратному расстоянию между рядами. Эти системы разработки обеспечивают очень быстрое разбуривание залежей. При этих системах в начале разработки залежи не учитываются литологические особенности пласта.

Системы с площадным расположением скважин. Рас­смотрим наиболее часто используемые на практике системы разработки нефтяных месторождений с площадным расположе­нием скважин: пятиточечную, семиточечную и девятиточечную.

Пятиточечная обращенная система (рис. 11). Элемент системы представляет собой квадрат, в углах которого находятся добывающие, а в центре - нагнетательная скважина. Для этой си­стемы отношение нагнетательных и добывающих скважин со­ставляет 1/1.

Рис. 11. Расположение скважин при пятиточечной обращенной системе разработки

Семиточечная обращенная система (рис. 12). Элемент системы представляет собой шестиугольник с добывающими скважина­ми в углах и нагнетательной в центре. Добывающие сква­жины расположены в углах шестиугольника, а нагнетательная- в центре. Соотношение 1/2, т. е. на одну нагнетательную сква­жину приходятся две добывающие.

Рис. 12. Расположение скважин при семиточечной обращенной системе разработки

1 – условный контур нефтеносности, 2 и 3 – скважины соответственно нагентательные и добывающие

Девятиточечная обращенная система (рис. 13). Соотношение нагнетательных и добывающих скважин составляет 1/3.

Рис. 13. Расположение скважин при девятиточечной обращенной системе разработки

1 – условный контур нефтеносности, 2 и 3 – скважины соответственно нагентательные и добывающие

Самая интенсивная из рассмотренных систем с площадным расположением скважин пятиточечная, наименее интенсивная девятиточечная. Считается, что все площадные системы «жест­кие», поскольку при этом не допускается без нарушения гео­метрической упорядоченности расположения скважин и пото­ков движущихся в пласте веществ использование других нагне­тательных скважин для вытеснения нефти из данного элемента, если нагнетательную скважину, принадлежащую данному элементу, нельзя эксплуатировать по тем или иным причинам.

В самом деле, если, например, в блочных системах разработки (особенно в трехрядной и пятирядной) не может эксплуатиро­ваться какая-либо нагнетательная скважина, то ее может заме­нить соседняя в ряду. Если же вышла из строя или не прини­мает закачиваемый в пласт агент нагнетательная скважина одного из элементов системы с площадным расположением скважин, то необходимо либо бурить в некоторой точке эле­мента другую такую скважину (очаг), либо осуществлять про­цесс вытеснения нефти из пласта за счет более интенсивной за­качки рабочего агента в нагнетательные скважины соседних элементов. В этом случае упорядоченность потоков в элементах сильно нарушается.

В то же время при использовании системы с площадным рас­положением скважин по сравнению с рядной получают важное преимущество, состоящее в возможности более рассредоточенно­го воздействия на пласт. Это особенно существенно в процессе разработки сильно неоднородных по площади пластов. При ис­пользовании рядных систем для разработки сильно неоднород­ных пластов нагнетание воды или других агентов в пласт со­средоточено в отдельных рядах. В случае же систем с площад­ным расположением скважин нагнетательные скважины более рассредоточены по площади, что дает возможность подвергнуть отдельные участки пласта большему воздействию. В то же вре­мя, как уже отмечалось, рядные системы вследствие их боль­шой гибкости по сравнению с системами с площадным распо­ложением скважин имеют преимущество в повышении охвата пласта воздействием по вертикали. Таким образом, рядные си­стемы предпочтительны при разработке сильно неоднородных по вертикальному разрезу пластов.

В поздней стадии разработки пласт оказывается в значитель­ной своей части занятым вытесняющим нефть веществом (на­пример, водой). Однако вода, продвигаясь от нагнетательных скважин к добывающим, оставляет в пласте некоторые зоны с высокой нефтенасыщенностью, близкой к первоначальной нефтенасыщенности пласта, т. е. так называемые целики нефти. На рис. 14 показаны целики нефти в элементе пятиточечной систе­мы разработки. Для извлечения из них нефти в принципе мож­но пробурить скважины из числа резервных, в результате чего получают девятиточечную систему.

Помимо упомянутых известны следующие системы разработ­ки: система с батарейным (кольцевым) расположением скважин (рис. 15), которую можно использовать в редких случаях в залежах кру­говой формы в плане; система при барьерном заводнении, при­меняемом при разработке нефтегазовых залежей; смешанные системы-комбинация описанных систем разработки, иногда со специальным расположением скважин, используют их при раз­работке крупных нефтяных месторождений и месторождений со сложными геолого-физическими свойствами.

Рис. 14. Элемент пятиточечной системы, трансформируемый в элемент девятиточечной системы расположения скважин

1 – «четверть» основных добывающих скважин пятиточечного элемента (угловые скважины), 2 – целики нефти (застойные зоны), 3 – дополнительно пробуренные добывающие скважины (боковые скважины), 4 - заводненная область элемента, 5 - нагнетательная скважина

Рис. 15. Схема батарейного расположения скважин

1 – нагнетательные скважины, 2 – условный контур нефтеносности, 3 и 4 – добывающие скважины соответственно первой батареи радиусом R 1 и второй батареи радиусом R 2

Кроме того, используют избирательное системы воздействия, применяемые для регулирования разработки нефтяных мес­торождений с частичным изменением ранее существовавшей си­стемы.

В случае применения методов воздействия при разработке истощенных залежей их называют вторичными. Если они применяются с самого начала разработки залежи, их называют первичными. Вакуум-процесс является типичным вто­ричным способом и никогда не применяется с самого начала экс­плуатации.

Метод поддержания давления путем закачки газа обычно применяется в залежах, которые имеют газовую шапку. Поддержание давления путем закачки газа преследует цель под­держивать энергетические ресурсы пласта в процессе эксплуата­ции. Для этого с самого начала эксплуатации в сводовую часть структуры закачивают газ через нагнетательные сква­жины, расположенные вдоль длинной оси структуры. Кроме того, закачка газа иногда применяется при площадном вытеснении нефти газом (метод Мариэтта).

Термическое воздействие на пласт осуществляется путем закачки горячей воды в пласт через нагнетательные скважины. Закачка горячей воды применяется при заводнении пластов, содержащих сильно парафинистую нефть и имеющих температуру около 100° С. Закачка холодной, воды в такой пласт приводит к охлаждению пласта, к выпадению парафина, который закупо­ривает поры пласта.

В том случае, когда воздействие на пласт по средствам закачки воды осуществляется после разработки залежи при режиме рас­творенного газа, можно выде­лить два основных этапа: а) период безводной добычи, когда нагнетаемая вода идет на заполнение дренированных пустот, занятых газом низкого давления, и на заме­щение вытесняемой остаточной нефти; б) период прогрессиру­ющего обводнения эксплуатационных скважин.

К моменту прорыва воды в эксплуатационные скважины все поровое пространство в пласте будет занято жидкой фазой, по­этому дальнейший процесс заводнения будет установившимся: количество добываемой в сутки жидкости будет равно суточному объему закачиваемой воды.

Обобщение материалов, проведенное американскими исследо­вателями , показало, что коэффициент извлечения нефти при режиме растворенного газа в среднем составляет 20% от геологических запасов. Применение площадного заводнения на последней стадии разработки увеличивает его до 40%. В то же время применение заводнения в самом начале разработки увеличивает коэффициент извлечения от 60 до 85%. Согласно расчетам американских спе­циалистов, на месторождении Ист-Тексас ожидается конечная нефтеотдача порядка 80% от геологических запасов.

Можно указать еще четыре параметра, которыми характеризуют ту или иную систему разработки.

1. Параметр плотности сетки скважин S c , равный площади нефтеносности, приходящейся на одну скважину, независимо от того, является скважина добывающей или нагнетательной.
Если площадь нефтеносности месторождения равна S, а число скважин на месторождении n, то S c = S/n. Размерность - м 2 /скв. В ряде случаев используют параметр S сд, равный площади нефтеносности, приходящейся на одну добывающую скважину.

2. Параметр А.B. Крылова N кр, равный отношению извлекаемых запасов нефти N к общему числу скважин на месторождении N кр = N/n. Размерность параметра =т/скв.

3. Параметр , равный отношению числа нагнетательных скважин n н к числу добывающих скважин n д = n н /n д. Параметр - безразмерный. Параметр для трехрядной системы равен примерно 1/3, а для пятирядной ~1/5.

4. Параметр р, равный отношению числа резервных скважин, бурящихся дополнительно к основному фонду скважин на месторождении к общему числу скважин. Резервные скважины бурят с целью вовлечения в разработку частей пласта, не охваченных разработкой в результате выявившихся в процессе эксплуатационного его разбуривания не известных ранее особенностей геологического строения этого пласта, а также физических
свойств нефти и содержащих ее пород (литологической неоднородности, тектонических нарушений, неньютоновских свойств нефти и т. д.).

Если число скважин основного фонда на месторождении составляет n, а число резервных скважин n р, то р = n р /n. Параметр р - безразмерный.

Параметр плотности сетки скважин S с вообще говоря, может изменяться в очень широких пределах для систем разработки без воздействия на пласт. Так, при разработке месторождений сверхвязких нефтей (вязкостью в несколько тысяч 10 -3 Па*с) он может составлять 1 - 2*10 4 м 2 /скв. Нефтяные месторождения с низкопроницаемыми коллекторами (сотые доли мкм 2) разрабатывают при S c = 10 - 20*10 4 м 2 /скв. Конечно,
разработка как месторождений высоковязких нефтей, так и месторождений с низкопроницаемыми коллекторами при указанных значениях S c может быть экономически целесообразной при значительных толщинах пластов, т. е. при высоких значениях параметра А.И.Крылова или при небольших глубинах залегания разрабатываемых пластов, т.е. при небольшой стоимости скважин. Для разработки обычных коллекторов S c = 25 - 64*10 4 м 2 /скв.

При разработке месторождений с высокопродуктивными трещиноватыми коллекторами S c может быть равен 70 - 100*10 4 м 2 /скв и более. Параметр N кр также изменяется в довольно широких пределах. В некоторых случаях он может быть равен нескольким десяткам тысяч тонн нефти на скважину, в других - доходить до миллиона тонн нефти на скважину.

Для систем разработки нефтяных месторождений без воздействия на пласт параметр , естественно, равен нулю, а параметр р может составлять в принципе 0,1 - 0,2, хотя резервные скважины в основном предусматривают для системы с воздействием на нефтяные пласты.

Нефтяные и нефтегазовые месторождения - это скопления углеводородов в земной коре, приуроченные к одной или нескольким локализованным геологическим структурам, т.е. структурам, находящимся вблизи одного и того же географического пункта.

Залежью называется естественное локальное единичное скопление нефти в одном или нескольких сообщающихся между собой пластах-коллекторах, т. е. в горных породах, способных вмещать в себе и отдавать при разработке нефть.

Залежи углеводородов, входящие в месторождения, обычно находятся в пластах или массивах горных пород, имеющих различное распространение под землей, часто - различные геолого-физические свойства. Во многих случаях отдельные нефтегазоносные пласты разделены значительными толщами непроницаемых пород или находятся только на отдельных участках месторождения. Такие обособленные или отличающиеся по свойствам пласты разрабатывают различными группами скважин, иногда при этом используют различную технологию.

Места скопления природного газа в свободном состоянии в порах и трещинах горных пород называются газовыми залежами . Если газовая залежь является рентабельной для разработки, т.е. когда сумма затрат на добычу, транспорт и использование газа меньше полученного экономического эффекта от его применения, то она называется промышленной. Газовым месторождением обычно называют одну залежь или группу залежей, расположенных на одной территории.

Размер и многопластовость месторождений с емкостными свойствами коллекторов определяют в целом величину и плотность запасов нефти, а в сочетании с глубиной залегания oбycловливают выбор системы разработки и способов добычи нефти.

С и с т е м о й р а з р а б о т к и месторождения следует называть совокупность взаимосвязанных инженерных решений, определяющих объекты разработки; последовательность и темп их разбуривания и обустройства; наличие воздействия на пласты с целью извлечения из них нефти и газа; число, соотношение и расположение нагнетательных и добывающих скважин; число резервных скважин, управление разработкой месторождения, охрану недр и окружающей среды. Построить систему разработки месторождения означает найти и осуществить указанную выше совокупность инженерных решений.

Введем понятие объекта разработки месторождения.

О б ъ е к т р а з р а б о т к и - это искусственно выделенное в пределах разрабатываемого месторождения геологическое образование (пласт, массив, структура, совокупность пластов), содержащее промышленные запасы углеводородов, извлечение которых из недр осуществляется при помощи определенной группы скважин или других горнотехнических сооружений.

Разработчики, пользуясь распространенной у нефтяников терминологией, обычно считают, что каждый объект разрабатывается «своей сеткой скважин». Необходимо подчеркнуть, что сама природа не создает объекты разработки - их выделяют люди, разрабатывающие месторождение. В объект разработки может быть включен один, несколько или все пласты месторождения.

Основные особенности объекта разработки - наличие в нем промышленных запасов нефти и определенная, присущая данному объекту группа скважин, при помощи которых он разрабатывается.

Чтобы лучше усвоить понятие объекта разработки, рассмотрим пример. Пусть имеем месторождение, разрез которого показан на рис. 1. Это месторождение содержит три пласта, отличающиеся толщиной, областями распространения насыщающих их углеводородов и физическими свойствами. В таблице приведены основные свойства пластов 1, 2 и 3, залегающих в пределах месторождения.

Рис.1. Разрез многопластового нефтяного месторождения

Можно утверждать, что на рассматриваемом месторождении целесообразно выделить два объекта разработки, объединив пласты 1 и 2 в один объект разработки (объект А), а пласт 3 разрабатывать как отдельный объект (объект Б).

Включение пластов 1 и 2 в один объект обусловлено тем, что они имеют близкие значения проницаемости и вязкости нефти и находятся на небольшом расстоянии друг от друга по вертикали. К тому же извлекаемые запасы нефти в пласте 2 сравнительно невелики. Пласт 3 хотя и имеет меньшие по сравнению с пластом 1 извлекаемые запасы нефти, но содержит маловязкую нефть и высокопроницаемый. Следовательно, скважины, вскрывшие этот пласт, будут высокопродуктивными. Кроме того, если пласт 3, содержащий маловязкую нефть, можно разрабатывать с применением обычного заводнения, то при разработке пластов 1 и 2, характеризующихся высоковязкой нефтью, придется с начала разработки применять иную технологию, например вытеснение нефти паром, растворами полиакриламида (загустителя воды) или при помощи внутрипластового горения.

Вместе с тем следует учитывать, что, несмотря на существенное различие параметров пластов 1, 2 и 3, окончательное решение о выделении объектов разработки принимают на основе анализа технологических и технико-экономических показателей различных вариантов объединения пластов в объекты разработки.

Объекты разработки иногда подразделяют на следующие виды: самостоятельный, т. е. разрабатываемый в данное время, и возвратный, т. е. тот, который будет разрабатываться скважинами, эксплуатирующими в этот период другой объект.

Важная составная часть создания такой системы - выделение объектов разработки. Поэтому рассмотрим этот вопрос более подробно. Заранее можно сказать, что объединение в один объект как можно большего числа пластов на первый взгляд всегда представляется выгодным, поскольку при таком объединении потребуется меньше скважин для разработки месторождения в целом. Однако чрезмерное объединение пластов в один объект может привести к существенным потерям в нефтеотдаче и, в конечном счете, к ухудшению технико-экономических показателей. На выделение объектов разработки влияют следующие факторы.

1. Геолого-физические свойства пород-коллекторов нефти и газа. Резко отличающиеся по проницаемости, общей и эффективной толщине, а также неоднородности пласты во многих случаях нецелесообразно разрабатывать как один объект, поскольку они могут существенно отличаться по продуктивности, пластовому давлению в процессе их разработки и, следовательно, по способам эксплуатации скважин, скорости выработки запасов нефти и изменению обводненности продукции. Для различных по площадной неоднородности пластов могут быть эффективными различные сетки скважин, так что объединять такие пласты в один объект разработки оказывается нецелесообразным. В сильно неоднородных по вертикали пластах, имеющих отдельные низкопроницаемые пропластки, не сообщающиеся с высокопроницаемыми, бывает трудно обеспечить приемлемый охват горизонта воздействием по вертикали вследствие того, что в активную разработку включаются только высокопроницаемые пропластки, а низкопроницаемые прослои не подвергаются воздействию закачиваемого в пласт агента (воды, газа). С целью повышения охвата таких пластов разработкой их стремятся разделить на несколько объектов.

2. Физико-химические свойства нефти и газа. Большое значение при выделении объектов разработки имеют свойства нефтей. Пласты с существенно различной вязкостью нефти бывает нецелесообразно объединять в один объект, так как их необходимо разрабатывать с применением различной технологии извлечения нефти из недр с различными схемами расположения и плотностью сетки скважин. Резко различное содержание парафина, сероводорода, ценных углеводородных компонентов, промышленное содержание других полезных ископаемых также может стать причиной невозможности совместной разработки пластов как одного объекта вследствие необходимости использования различной технологии извлечения нефти и других полезных ископаемых из пластов.

3. Фазовое состояние углеводородов и режим пластов . Различные пласты, залегающие сравнительно недалеко друг от друга по вертикали и имеющие сходные геолого-физические свойства, в ряде случаев бывает нецелесообразно объединять в один объект в результате различного фазового состояния пластовых углеводородов и режима пластов. Так, если в одном пласте имеется значительная газовая шапка, а другой разрабатывается при естественном упруговодонапорном режиме, то объединение их в один объект может оказаться нецелесообразным, так как для их разработки потребуются различные схемы расположения и числа скважин, а также различная технология извлечения нефти и газа.

4. Условия управления процессом разработки нефтяных месторожде ний. Чем больше пластов и пропластков включено в один объект, тем технически и технологически труднее осуществлять контроль за перемещением разделов нефти и вытесняющего ее агента (водонефтяных и газонефтяных разделов) в отдельных пластах и пропластках, труднее осуществлять раздельное воздействие на пропластки и извлечение из них нефти и газа, труднее изменять скорости выработки пластов и пропластков. Ухудшение условий управления разработкой месторождения ведет к уменьшению нефтеотдачи.

5. Техника и технология эксплуатации скважин. Могут быть многочисленные технические и технологические причины, приводящие к целесообразности или нецелесообразности применения тех или иных вариантов выделения объектов. Например, если из скважин, эксплуатирующих какой-то пласт или группы пластов, выделенных в объекты разработки, предполагается отбирать настолько значительные дебиты жидкости, что они будут предельными для современных средств эксплуатации скважин. Поэтому дальнейшее укрупнение объектов окажется невозможным по технической причине.

В заключение следует еще раз подчеркнуть, что влияние каждого из перечисленных факторов на выбор объектов разработки должно быть сначала подвергнуто технологическому и технико-экономическому анализу, и только после него можно принимать решение о выделении объектов разработки.

Под системой разработки нефтяной залежи подразумевается последовательность её эксплуатационного разбуривания в совокупности с методами воздействия на залежь.

Системы разработки

Область применения

Основанные на размещении скважин по равномерной сетке

1. При разработке залежей любых типов, приуроченных к пластам, неоднородным по своим литолого-физическим свойствам и с низкой проницаемостью (особенно в приконтурных областях), в процессе эксплуатации которых проявляется режим растворённого газа.

2. При разработке залежей массивного типа, подстилаемых по всей площади подошвенной водой.

Основанные на заложении скважин рядами вдоль контуров нефтеносности или рядов нагнетательных скважин.

В основном для залежей пластового типа и реже литологических или стратиграфических, если при разработке может быть сохранён естественный напорный режим или осуществляется воздействие на пласт.

Системы разработки, основанные на размещении скважин по равномерной сетке

Сетки по форме подразделяются на треугольные и квадратные. При треугольной сетке площадь дренируется более полно (91% площади), чем при квадратной(79%), но число скважин, приходящихся на единицу площади, увеличивается на 15,4% по сравнению с квадратной. Расстояние между скважинами по треугольной сетке определяют по формуле

гдеl – расстояние между скважинами в метрах;

S – площадь, приходящаяся на скважину, в м 2 .

По темпу ввода скважин в эксплуатацию различают сплошную и замедленную системы разработки. При сплошной системе все скважины вводятся в эксплуатацию в короткий срок – в течение года. При большем сроке система считается замедленной.

По порядку ввода скважин в эксплуатацию различают системы:

    сгущающуюся, когда вся площадь вначале покрывается редкой сеткой скважин, а затем в промежутках между первыми скважинами бурят скважины второй очереди;

    ползущую, когда первые скважины располагаются в одном и том же ряду, а последующие размещаются в определённом направлении, ориентированном по отношению к структурным элементам пласта. Различают следующие ползущие системы:

а) ползущую вниз по падению, когда ряды или группы скважин последовательно наращиваются в направлении падения пласта;

б) ползущую вверх по восстанию, когда ряды или группы скважин последовательно наращиваются в направлении восстания пласта;

в) ползущую по простиранию, когда первая группа скважин накладывается вкрест простирания пласта, а дальнейшие группы задаются в направлении простирания пласта.

Системы разработки, основанные на заложении скважин рядами

По последовательности разбуривания залежи выделяют системы:

    ползущую, когда большие размеры продуктивной площади не позволяют ввести все части залежи в активную разработку. Вначале бурят не более трёх рядов скважин, расположенных параллельно ряду нагнетательных скважин (контур водоносности). При этом значительная часть пласта в первый период остаётся неразбуренной. Четвёртый ряд скважин бурят, когда обводнится первый, пятый – когда второй и т. д.

    одновременную, когда разбуривание рядами осуществляется при разработке небольших и узких залежей, на которых достаточно расположить относительно оси складки по три-четыре ряда скважин.

По способу размещения нагнетательных скважин различают системы:

    с законтурным заводнением;

    с внутриконтурным заводнением;

    с закачкой газа в газовую шапку (нагнетательные скважины располагают в пределах шапки);

    с закачкой газа (высокого давления или сжиженного газа) в нефтяную часть залежи.