Химические свойства металлов реакции. Общие свойства металлов. Металлическая связь. Взаимодействие металлов с кислотами

Под металлами подразумевают группу элементов, которая представлена в виде наиболее простых веществ. Они обладают характерными свойствами, а именно высокой электро- и теплопроводностью, положительным температурным коэффициентом сопротивления, высокой пластичностью и металлическим блеском.

Заметим, что из 118 химических элементов, которые были открыты на данный момент, к металлам следует относить:

  • среди группы щёлочноземельных металлов 6 элементов;
  • среди щелочных металлов 6 элементов;
  • среди переходных металлов 38;
  • в группе лёгких металлов 11;
  • среди полуметаллов 7 элементов,
  • 14 среди лантаноидов и лантан,
  • 14 в группе актиноидов и актиний,
  • Вне определения находятся бериллий и магний.

Исходя из этого, к металлам относятся 96 элементов. Рассмотрим подробней, с чем реагируют металлы. Поскольку на внешнем электронном уровне у большинства металлов находится небольшое количество электронов от 1 до 3-х, то они в большинстве своих реакций могут выступать в качестве восстановителей (то есть они отдают свои электроны другим элементам).

Реакции с наиболее простыми элементами

  • Кроме золота и платины, абсолютно все металлы реагируют с кислородом. Заметим также, что реакция при высоких температурах происходит с серебром, однако оксид серебра(II) при нормальных температурах не образуется. В зависимости от свойств металла, в результате реакции с кислородом образовываются оксиды, надпероксиды и пероксиды.

Приведем примеры каждого из химического образования:

  1. оксид лития – 4Li+O 2 =2Li 2 O;
  2. надпероксид калия – K+O 2 =KO 2 ;
  3. пероксид натрия – 2Na+O 2 =Na 2 O 2 .

Для того, чтобы получить оксид из пероксида, его нужно восстановить тем же металлом. Например, Na 2 O 2 +2Na=2Na 2 O. С малоактивными и со средними металлами подобная реакция будет происходить только при нагревании, к примеру: 3Fe+2O 2 =Fe 3 O 4 .

  • С азотом металлы могут реагировать только с активными металлами, однако при комнатной температуре может взаимодействовать только литий, образуя при этом нитриды – 6Li+N 2 =2Li 3 N, однако при нагревании происходит такая химическая реакция 2Al+N 2 =2AlN, 3Ca+N 2 =Ca 3 N 2 .
  • С серой, как и с кислородом, реагируют абсолютно все металлы, при этом исключением являются золото и платина. Заметим, что железо может взаимодействовать только при нагревании с серой, образовывая при этом сульфид: Fe+S=FeS
  • Только активные металлы могут реагировать с водородом. К ним относятся металлы группы IA и IIA, кроме берилия. Такие реакции могут осуществляться только при нагревании, образовывая гидриды.

    Так как степень окисления водорода считается?1, то металлы в данном случае выступают как восстановители: 2Na+H 2 =2NaH.

  • Реагируют с углеродом также самые активные металлы. В результате этой реакции образовываются ацетилениды или метаниды.

Рассмотрим, какие металлы реагируют с водой и что они дают в результате этой реакции? Ацетилены при взаимодействии с водой будут давать ацетилен, а метан получится в результате реакции воды с метанидами. Приведем примеры данных реакций:

  1. Ацетилен – 2Na+2C= Na 2 C 2 ;
  2. Метан - Na 2 C 2 +2H 2 O=2NaOH+C 2 H 2 .

Реакция кислот с металлами

Металлы с кислотами могут также реагировать по-разному. Со всеми кислотами реагируют только те металлы, которые в ряду стоят электрохимической активности металлов до водорода.

Приведем пример реакции замещения, которая показывает, с чем реагируют металлы. По-другому такая реакция называется окислительно-восстановительной: Mg+2HCl=MgCl 2 +H 2 ^.

Некоторые кислоты могут также взаимодействовать с металлами, которые стоят после водорода: Cu+2H 2 SO 4 =CuSO 4 +SO 2 ^+2H 2 O.

Заметим, что разбавленная такая кислота может реагировать с металлом по приведенной классической схеме: Mg+H 2 SO 4 =MgSO 4 +H 2 ^.

С химической точки зрения металл – это элемент, который во всех соединениях проявляет положительную степень окисления. Из известных в настоящее время 109 элементов 86 являются металлами. Основной отличительной особенностью металлов является наличие в конденсированном состоянии свободных, не связных с определенным атомом электронов. Эти электроны способны перемещаться по всему объему тела. Наличие свободных электронов определяет всю совокупность свойств металлов. В твердом состоянии большинство металлов имеет кристаллическую высокосимметричную структуру одного из типов: кубическую объемноцентрированную, кубическую гранецентрированную или гексагональную плотноупакованную (рис. 1).

Рис. 1. Типичная структура кристалла металлов: а – кубическая объемноцентрированная; б–кубическая гранецентрированная; в – плотная гексагональная

Существует техническая классификация металлов. Обычно выделяют следующие группы: черные металлы (Fe); тяжелые цветные металлы (Cu, Pb, Zn, Ni, Sn, Co, Sb, Bi, Hg, Cd), легкие металлы с плотностью менее 5 г/см 3 (Al, Mg, Ca и т.д.), драгоценные металлы (Au, Ag и платиновые металлы ) и редкие металлы (Be, Sc, In, Ge и некоторые другие).

В химии металлы классифицируются по их месту в периодической системе элементов. Различают металлы главных и побочных подгрупп. Металлы главных подгрупп называют непереходными. Эти металлы характеризуются тем, что в их атомах происходит последовательное заполнение s– и p– электронных оболочек.

Типичными металлами являются s–элементы (щелочные Li, Na, K, Rb, Cs, Fr и щелочноземельные Be, Mg, Ca, Sr, Ba, Ra металлы). Данные металлы расположены в Iа и IIа подгруппах (т. е., в главных подгруппах I и II групп). Этим металлам отвечает конфигурация валентных электронных оболочек ns 1 или ns 2 (n – главное квантовое число). Для данных металлов характерно:

а) металлы имеют на внешнем уровне 1 – 2 электрона, поэтому проявляют постоянные степени окисления +1, +2;

б) оксиды этих элементов носят основной характер (исключение –бериллий, т.к. малый радиус иона придает ему амфотерные свойства);

в) гидриды имеют солеобразный характер и образуют ионные кристаллы;

г) возбуждение электронных подуровней возможно только у металлов IIА группы с последующей sp–гибридизацией орбиталей.

К p–металлам относятся элементы IIIа (Al, Ga, In, Tl), IVа (Ge, Sn, Pb), Vа (Sb, Bi) и VIа (Ро) групп с главными квантовыми числами 3, 4, 5, 6. Данным металлам отвечает конфигурация валентных электронных оболочек ns 2 p z (z может принимать значение от 1 до 4 и равно номеру группы минус 2). Для данных металлов характерно:

а) образование химических связей осуществляется s – и p–электронами в процессе их возбуждения и гибридизации (sp–и spd), однако сверху вниз по группам способность к гибридизации падает;


б) оксиды p– металлов амфотерные или кислотные (основные оксиды только у In и Tl);

в) гидриды p–металлов имеют полимерный характер (AlH 3) n или газообразный (SnH 4 ,PbH 4 и т. д.), что подтверждает сходство с неметаллами, открывающими эти группы.

В атомах металлов побочных подгрупп, называемых переходными металлами, происходит застраивание d– и f– оболочек, в соответствии с чем их делят на d–группу и две f–группы лантаноиды и актиноиды.

К переходным металлам относят 37 элементов d–группы и 28 металлов f–группы. К металлам d–группы относят элементы Ib (Cu, Ag, Au), IIb (Zn, Cd, Hg), IIIb (Sc, Y, La, Ac), IVb (Ti, Zr, Hf, Db), Vb (V, Nb, Ta, Jl), VIb (Cr, Mo, W, Rf), VIIb (Mn, Tc, Re, Bh) и VIII групп (Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Rt, Hn, Mt, Db, Jl, Rf, Bh, Hn, Mt). Этим элементам отвечает конфигурация 3d z 4s 2 . Исключения составляют некоторые атомы, в том числе атомы хрома с полузаполненной 3d 5 –оболочкой (3d 5 4s 1) и меди – с полностью заполненной 3d 10 –оболочкой (3d 10 4s 1). Эти элементы обладают некоторыми общими свойствами:

1. все они образуют сплавы между собой и другими металлами;

2. наличие частично заполненных электронных оболочек обусловливает способность d–металлов образовывать парамагнитные соединения;

3. в химических реакциях они проявляют переменную валентность (за немногими исключениями), а их ионы и соединения, как правило, окрашены;

4. в химических соединениях d–элементы электроположительны. "Благородные" металлы, обладая высоким положительным значением стандартного электродного потенциала (Е>0), взаимодействуют с кислотами необычным образом;

5. ионы d–металлов имеют вакантные атомные орбитали валентного уровня (ns, np, (n–1) d), поэтому они проявляют акцепторные свойства, выступая в качестве центрального иона в координационных (комплексных) соединениях.

Химические свойства элементов определяются их положением в Периодической системе элементов Менделеева. Так, металлические свойства сверху вниз в группе возрастают, что обусловлено уменьшением силы взаимодействия между валентными электронами и ядром вследствие увеличения радиуса атома и за счет возрастания экранирования электронами, расположенными на внутренних атомных орбиталях. Это приводит к облегчению ионизации атома. В периоде металлические свойства уменьшаются слева направо, т.к. это связано с увеличением заряда ядра и тем самым с увеличением прочности связи валентных электронов с ядром.

В химическом отношении атомы всех металлов характеризуются сравнительной легкостью отдачи валентных электронов (т.е. малой величиной энергии ионизации) и низким значением сродства к электрону (т.е. малой способностью удерживать избыточные электроны). Как следствие этого низкое значение электроотрицательности, т.е., способность образовывать только положительно заряженные ионы и проявлять в своих соединениях только положительную степень окисления. В связи с этим металлы в свободном состоянии являются восстановителями.

Восстановительная способность разных металлов неодинакова. Для реакций в водных растворах она определяется значением стандартного электродного потенциала металла (т.е. положением металла в ряду напряжений) и концентрацией (активностью) его ионов в растворе.

Взаимодействие металлов с элементарными окислителями (F 2 , Cl 2 , O 2 , N 2 , S и т.д.). Например, реакция с кислородом, как правило, протекает следующим образом

2Me + 0,5nO 2 = Me 2 O n ,

где n – валентность металла.

Взаимодействие металлов с водой. Металлы, обладающие стандартным потенциалом менее –2,71 В, вытесняют водород из воды на холоде с образованием гидроксидов металлов и водорода. Металлы со стандартным потенциалом от –2,7 до –1,23 В вытесняют водород из воды при нагревании

Me + nH 2 О = Me(OH) n + 0,5n H 2 .

Остальные металлы с водой не реагируют.

Взаимодействие с щелочами. С щелочами могут реагировать металлы, дающие амфотерные оксиды, и металлы, обладающие высокими степенями окисления, в присутствии сильного окислителя. В первом случае металлы образуют анионы своих кислот. Так, реакция взаимодействия алюминия с щелочью запишется уравнением

2Al + 6H 2 O + 2NaOH = 2Na + 3H 2

в котором, лигандом является ион гидроксида. Во втором случае образуются соли, например K 2 CrO 4 .

Взаимодействие металлов с кислотами. С кислотами металлы реагируют различно в зависимости от численного значения стандартного электродного потенциала (Е) (т.е. от положения металла в ряду напряжения) и окислительных свойств кислоты:

· в растворах галогеноводородов и разбавленной серной кислоты окислителем является только ион Н + , и поэтому с этими кислотами взаимодействуют металлы, стандартный потенциал которых меньше стандартного потенциала водорода:

Me + 2n H + = Me n+ + n H 2 ;

· концентрированная серная кислота растворяет почти все металлы независимо от положения их в ряду стандартных электродных потенциалов (кроме Au и Pt). Водород при этом не выделяется, т.к. функцию окислителя в кислоте выполняет cульфат–ион (SO 4 2–). В зависимости от концентрации и условий проведения опыта cульфат–ион восстанавливается до различных продуктов. Так, цинк в зависимости от концентрации серной кислоты и температуры реагирует следующим образом:

Zn + H 2 SO 4(разб.) = ZnSO 4 + H 2

Zn + 2H 2 SO 4(конц.) = ZnSO 4 + SO 2 +H 2 O

– при нагревании 3Zn + 4H 2 SO 4(конц.) = 3ZnSO 4 + S + 4H 2 O

– при очень высокой температуре 4Zn + 5H 2 SO 4(конц.) = 4ZnSO 4 + H 2 S +4H 2 O;

· в разбавленной и концентрированной азотной кислоте функцию окислителя выполняет нитрат–ион (NO 3 –), поэтому продукты восстановления зависят от степени разбавления азотной кислоты и активности металлов. В зависимости от концентрации кислоты, металла (величины его стандартного электродного потенциала) и условий проведения опыта нитрат–ион восстанавливается до различных продуктов. Так, кальций в зависимости от концентрации азотной кислоты реагирует следующим образом:

4Ca +10HNO 3(оч. разб) = 4Ca(NO 3) 2 + NH 4 NO 3 + 3H 2 O

4Ca + 10HNO 3(конц) = 4Ca(NO 3) 2 + N 2 O + 5H 2 O.

Концентрированная азотная кислота не реагирует (пассивирует) с железом, алюминием, хромом, платиной и некоторвми другими металлами.

Взаимодействие металлов друг с другом. При высоких температурах металлы способны реагировать друг с другом с образованием сплавов. Сплавы могут быть твердыми растворами и химическими (интерметаллическими) соединениями (Mg 2 Pb, SnSb, Na 3 Sb 8 , Na 2 K и др.).

Свойства металлического хрома (…3d 5 4s 1). Простое вещество хром представляет собой блестящий на изломе серебристый металл, который хорошо проводит электрический ток, имеет высокую температуру плавления (1890°С) и кипения (2430°С), большую твердость (в присутствии примесей, очень чистый хром мягок) и плотность (7,2 г/см 3).

При обычной температуре хром устойчив к действию элементарных окислителей и воде благодаря плотной окисной пленке. При высоких температурах хром взаимодействует с кислородом и другими окислителями.

4Cr + 3O 2 ® 2Cr 2 O 3

2Cr + 3S (пар) ® Cr 2 S 3

Cr + Cl 2(газ) ® CrCl 3 (малиновый цвет)

Cr + HCl (газ) ® CrCl 2

2Cr + N 2 ® 2CrN (или Cr 2 N)

С металлами при сплавлении хром образует интерметаллиды (FeCr 2 , CrMn 3). При 600°С хром взаимодействует с парами воды:

2Cr + 3H 2 O ® Cr 2 O 3 + 3H 2 ­

В электрохимическом отношении металлический хром близок к железу:. Поэтому он может растворяться в неокисляющих (по аниону) минеральных кислотах, таких как галогеноводородные:

Сr + 2HCl ® CrCl 2(голубой цвет) + H 2 ­.

На воздухе идет быстро следующая стадия:

2CrCl 2 + 1/2O 2 + 2HCl ® 2CrCl 3 (зеленый цвет) + H 2 O

Окисляющие (по аниону) минеральные кислоты растворяют хром до трехвалентного состояния:

2Cr + 6H 2 SO 4 ® Cr 2 (SO 4) 3 + 3SO 2 + 6H 2 O

В случае с HNO 3(конц) происходит пассивация хрома – на поверхности образуется прочная пленка оксида – и металл не реагирует с кислотой. (Пассивный хром имеет высокий окислительно-восстановительный потенциал = + 1,3 В.)

Основная область применения хрома – металлургия: создание хромистых сталей. Так, в инструментальную сталь вводят 3 – 4% хрома, шарикоподшипниковая сталь содержит 0,5 – 1,5% хрома, в нержавеющей стали (один из вариантов): 18 – 25% хрома, 6 – 10% никеля, < 0,14% углерода, ~0,8% титана, остальное – железо.

Свойства металлического железа (…3d 6 4s 2). Железо – белый блестящий металл. Образует несколько кристаллических модификаций, устойчивых в определенном температурном интервале.

Химические свойства металлического железа определяются его положением в ряду напряжений металлов: .

При нагревании в атмосфере сухого воздуха железо окисляется:

2Fe + 3/2O 2 ® Fe 2 O 3

В зависимости от условий и от активности неметаллов железо может образовывать металлоподобные (Fe 3 C, Fe 3 Si, Fe 4 N), солеподобные (FeCl 2 , FeS) соединения и твердые растворы (с C, Si, N, B, P, H).

В воде железо интенсивно корродирует:

2Fe + 3/2O 2 +nH 2 O ® Fe 2 O 3 ×nH 2 O.

При недостатке кислорода образуется смешанный оксид Fe 3 O 4:

3Fe + 2O 2 + nH 2 O ® Fe 3 O 4 ×nH 2 O

Разбавленная соляная, серная и азотная кислоты растворяют железо до двухвалентного иона:

Fe + 2HCl ® FeCl 2 + H 2

4Fe + 10HNO 3(оч. разб.) ® 4Fe(NO 3) 2 + NH 4 NO 3 + 3H 2 O

Более концентрированная азотная и горячая концентрированная серная кислоты окисляют железо до трехвалентного состояния (выделяются NO и SO 2 соответственно):

Fe + 4HNO 3 ® Fe(NO 3) 3 + NO + 2H 2 O

Очень концентрированная азотная кислота (плотность 1,4 г/см3) и серная (олеум) пассивируют железо, образуя на поверхности металла оксидные пленки.

Железо используют для получения железоуглеродистых сплавов. Велико биологическое значение железа, т.к. оно – составная часть гемоглобина крови. В организме человека содержится около 3 г железа.

Химические свойства металлического цинка (…3d 10 4s 2). Цинк – синевато-белый, пластичный и тягучий металл, но выше 200°С становится хрупким. Во влажном воздухе он покрывается защитной пленкой основной соли ZnCO 3 ×3Zn(OH) 2 или ZnO и дальнейшего окисления не происходит. При высоких температурах взаимодействует:

2Zn + O 2 ® 2ZnO

Zn + Cl 2 ® ZnCl 2

Zn + H 2 O (пар) ® Zn(OH) 2 + H 2 .

Исходя из величин стандартных электродных потенциалов, цинк вытесняет кадмий, который является его электронным аналогом, из солей: Cd 2+ + Zn ® Cd + Zn 2+ .

Благодаря амфотерности гидроокиси цинка металлический цинк способен растворяться в щелочах:

Zn + 2KOH + H 2 O ® K 2 + H 2

В разбавленных кислотах:

Zn + H 2 SO 4 ® ZnSO 4 + H 2

4Zn + 10HNO 3 ® 4Zn(NO 3) 2 + NH 4 NO 3 + 3H 2 O

В концентрированных кислотах:

4Zn + 5H 2 SO 4 ® 4ZnSO 4 + H 2 S + 4H 2 O

3Zn + 8HNO 3 ® 3Zn(NO 3) 2 + 2NO + 4H 2 O

Значительная часть цинка расходуется для цинкования железных и стальных изделий. Широкое промышленное использование имеют сплавы цинка с медью (нейзильбер, латунь). Цинк широко используется при изготовлении гальванических элементов.

Химические свойства металлической меди (…3d 10 4s 1). Металлическая медь кристаллизуется в кубической гранецентрированной кристаллической решетке. Это ковкий мягкий, вязкий металл розового цвета с температурой плавления 1083°С. Медь находится на втором месте после серебра по электро- и теплопроводности, что обусловливает значение меди для развития науки и техники.

Медь реагирует с поверхности с кислородом воздуха при комнатной температуре, цвет поверхности становится темнее, а в присутствии CO 2 , SO 2 и паров воды покрывается зеленоватой пленкой основных солей (CuOH) 2 CO 3 , (CuOH) 2 SO 4 .

Медь непосредственно соединяется с кислородом, галогенами, серой:

4CuO 2Cu 2 O + O 2

Cu + S ® Cu 2 S

В присутствии кислорода металлическая медь взаимодействует с раствором аммиака при обычной температуре:

Находясь в ряду напряжений после водорода , медь не вытесняет его из разбавленных соляной и серной кислот. Однако в присутствии кислорода воздуха медь растворяется в этих кислотах:

2Cu + 4HCl + O 2 ® 2CuCl 2 + 2H 2 O

Окисляющие кислоты растворяют медь с переходом ее в двухвалентное состояние:

Cu + 2H 2 SO 4 ® CuSO 4 + SO 2 + 2H 2 O

3Cu + 8HNO 3(конц.) ® 3Cu(NO 3) 2 + NO 2 + 4H 2 O

Со щелочами медь не взаимодействует.

С солями более активных металлов медь взаимодействует, и эта окислительно-восстановительная реакция лежит в основе некоторых гальванических элементов:

Cu SO 4 + Zn® Zn SO 4 + Cu; E о = 1,1 B

Mg + CuCl 2 ® MgCl 2 + Cu; E о = 1,75 B.

Медь образует с другими металлами большое число интерметаллических соединений. Наибольшую известность и ценность имеют сплавы: латунь Cu–Zn (18 – 40% Zn), бронза Cu–Sn (колокольная – 20% Sn), инструментальная бронза Cu–Zn–Sn (11% Zn, 3 – 8% Sn), мельхиор Cu–Ni–Mn–Fe (68% Cu, 30% Ni, 1% Mn, 1% Fe).

Нахождение металлов в природе и способы получения. Вследствие высокой химической активности, металлы в природе находятся в виде различных соединений, и только малоактивные (благородные) металл – платина, золото и т.п. – встречаются в самородном (свободном) состоянии.

Наиболее распространенными природными соединениями металлов являются оксиды (гематит Fe 2 O 3 , магнетит Fe 3 O 4 , куприт Cu 2 O, корунд Al 2 O 3 , пиролюзит MnO 2 и др.), сульфиды (галенит PbS, сфалерит ZnS, халькопирит CuFeS, киноварь HgS и т.д.), а также соли кислородосодержащих кислот (карбонаты, силикаты, фосфаты и сульфаты). Щелочные и щелочноземельные металлы встречаются преимущественно в виде галогенидов (фторидов или хлоридов).

Основная масса металлов получается путем переработки полезного ископаемого – руды. Поскольку металлы, входящие в состав руд находятся в окисленном состоянии, то их получение осуществляется путем реакции восстановления. Предварительно руду очищают от пустой породы

Образовавшийся концентрат оксида металла очищают от воды, а сульфиды, для удобства последующей переработки, переводят в оксиды путем обжига, например:

2ZnS + 2O 2 = 2ZnO + 2SO 2 .

Для разделения элементов полиметаллических руд пользуются методом хлорирования. При обработке руд хлором в присутствии восстановителя образуются хлориды различных металлов, которые вследствие значительной и различной летучести могут быть легко отделены друг от друга.

Восстановление металлов в промышленности осуществляется посредством различных процессов. Процесс восстановления безводных соединений металлов при высоких температурах называют пирометаллургией. В качестве восстановителей используют металлы, более активные, чем получаемый, либо углерод. В первом случае говорят о металлотермии, во втором – карботермии, например:

Ga 2 O 3 + 3C = 2Ga + 3CO,

Cr 2 O 3 + 2Al = 2Cr + Al 2 O 3 ,

TiCl 4 + 2Mg = Ti + 2MgCl 2 .

Особое значение углерод приобрел как восстановитель железа. Углерод для восстановления металлов применяется обычно в виде кокса.

Процесс восстановления металлов из водных растворов их солей относится к области гидрометаллургии. Получение металлов осуществляется при обычных температурах, причем в качестве восстановителей могут быть использованы сравнительно активные металлы или электроны катода при электролизе. Электролизом водных растворов солей могут быть получены только сравнительно малоактивные металлы, расположенные в ряду напряжений (стандартных электродных потенциалов) непосредственно перед водородом или после него. Активные металлы – щелочные, щелочноземельные, алюминий и некоторые другие, получают электролизом расплава солей.

Металлы - активные восстановители с положительной степенью окисления. Благодаря химическим свойствам металлы широко используются в промышленности, металлургии, медицине, строительстве.

Активность металлов

В реакциях атомы металлов отдают валентные электроны и окисляются. Чем больше энергетических уровней и меньше электронов имеет атом металла, тем легче ему отдавать электроны и вступать в реакции. Поэтому металлические свойства увеличиваются сверху вниз и справа налево в таблице Менделеева.

Рис. 1. Изменение металлических свойств в таблице Менделеева.

Активность простых веществ показана в электрохимическом ряду напряжений металлов. Слева от водорода находятся активные металлы (активность увеличивается к левому краю), справа - неактивные.

Наибольшую активность проявляют щелочные металлы, находящиеся в I группе периодической таблицы и стоящие левее водорода в электрохимическом ряду напряжений. Они вступают в реакцию со многими веществами уже при комнатной температуре. За ними идут щелочноземельные металлы, входящие во II группу. Они реагируют с большинством веществ при нагревании. Металлы, находящиеся в электрохимическом ряду от алюминия до водорода (средней активности) требуют дополнительных условий для вступления в реакции.

Рис. 2. Электрохимический ряд напряжений металлов.

Некоторые металлы проявляют амфотерные свойства или двойственность. Металлы, их оксиды и гидроксиды реагируют с кислотами и основаниями. Большинство металлов реагирует только с некоторыми кислотами, замещая водород и образуя соль. Наиболее ярко выраженные двойственные свойства проявляют:

  • алюминий;
  • свинец;
  • цинк;
  • железо;
  • медь;
  • бериллий;
  • хром.

Каждый металл способен вытеснять стоящий правее него в электрохимическом ряду другой металл из солей. Металлы, находящиеся слева от водорода, вытесняют его из разбавленных кислот.

Свойства

Особенности взаимодействия металлов с разными веществами представлены в таблице химических свойств металлов.

Реакция

Особенности

Уравнение

С кислородом

Большинство металлов образует оксидные плёнки. Щелочные металлы самовоспламеняются в присутствии кислорода. При этом натрий образует пероксид (Na 2 O 2), остальные металлы I группы - надпероксиды (RO 2). При нагревании щелочноземельные металлы самовоспламеняются, металлы средней активности - окисляются. Во взаимодействие с кислородом не вступают золото и платина

4Li + O 2 → 2Li 2 O;

2Na + O 2 → Na 2 O 2 ;

K + O 2 → KO 2 ;

4Al + 3O 2 → 2Al 2 O 3 ;

2Cu + O 2 → 2CuO

С водородом

При комнатной температуре реагируют щелочные, при нагревании - щелочноземельные. Бериллий не вступает в реакцию. Магнию дополнительно необходимо высокое давление

Sr + H 2 → SrH 2 ;

2Na + H 2 → 2NaH;

Mg + H 2 → MgH 2

Только активные металлы. Литий вступает в реакцию при комнатной температуре. Остальные металлы - при нагревании

6Li + N 2 → 2Li 3 N;

3Ca + N 2 → Ca 3 N 2

С углеродом

Литий и натрий, остальные - при нагревании

4Al + 3C → Al 3 C4;

2Li+2C → Li 2 C 2

Не взаимодействуют золото и платина

2K + S → K 2 S;

Fe + S → FeS;

Zn + S → ZnS

С фосфором

При нагревании

3Ca + 2P → Ca 3 P 2

С галогенами

Не реагируют только малоактивные металлы, медь - при нагревании

Cu + Cl 2 → CuCl 2

Щелочные и некоторые щелочноземельные металлы. При нагревании, в условиях кислой или щелочной среды реагируют металлы средней активности

2Na + 2H 2 O → 2NaOH + H 2 ;

Ca + 2H 2 O → Ca(OH) 2 + H 2 ;

Pb + H 2 O → PbO + H 2

С кислотами

Металлы слева от водорода. Медь растворяется в концентрированных кислотах

Zn + 2HCl → ZnCl 2 + 2H 2 ;

Fe + H 2 SO 4 → FeSO 4 + H 2 ;

Cu + 2H 2 SO 4 → CuSO 4 + SO 2 +2H 2 O

Со щелочами

Только амфотерные металлы

2Al + 2KOH + 6H 2 O → 2K + 3H 2

Активные замещают менее активные металлы

3Na + AlCl 3 → 3NaCl + Al

Металлы взаимодействуют между собой и образуют интерметаллические соединения - 3Cu + Au → Cu 3 Au, 2Na + Sb → Na 2 Sb.

Применение

Общие химические свойства металлов используются для создания сплавов, моющих средств, применяются в каталитических реакциях. Металлы присутствуют в аккумуляторах, электронике, в несущих конструкциях.

Основные отрасли применения указаны в таблице.

Рис. 3. Висмут.

Что мы узнали?

Из урока 9 класса химии узнали об основных химических свойствах металлов. Возможность взаимодействовать с простыми и сложными веществами определяет активность металлов. Чем активнее металл, тем легче он вступает в реакцию при обычных условиях. Активные металлы реагируют с галогенами, неметаллами, водой, кислотами, солями. Амфотерные металлы взаимодействуют со щелочами. Малоактивные металлы не реагируют с водой, галогенами, большинством неметаллов. Кратко рассмотрели отрасли применения. Металлы используются в медицине, промышленности, металлургии, электронике.

Тест по теме

Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 246.

Первый материал, который научились использовать люди для своих нужд - это камень. Однако позже, когда человеку стало известно о свойствах металлов, камень отошел далеко назад. Именно эти вещества и их сплавы стали самым важным и главным материалом в руках людей. Из них изготавливались предметы быта, орудия труда, строились помещения. Поэтому в данной статье мы рассмотрим, что же собой представляют металлы, общая характеристика, свойства и применение которых так актуально по сей день. Ведь буквально сразу за каменным веком последовала целая плеяда металлических: медный, бронзовый и железный.

Металлы: общая характеристика

Что же объединяет всех представителей этих простых веществ? Конечно, это строение их кристаллической решетки, типы химических связей и особенности электронного строения атома. Ведь отсюда и характерные физические свойства, которые лежат в основе использования этих материалов человеком.

В первую очередь, рассмотрим металлы как химические элементы периодической системы. В ней они располагаются достаточно вольготно, занимая 95 ячеек из известных на сегодняшний день 115. Есть несколько особенностей их расположения в общей системе:

  • Образуют главные подгруппы I и II групп, а так же III, начиная с алюминия.
  • Все побочные подгруппы состоят только из металлов.
  • Они располагаются ниже условной диагонали от бора до астата.

Опираясь на такие данные, легко проследить, что неметаллы собраны в верхней правой части системы, а все остальное пространство принадлежит рассматриваемым нами элементам.

Все они имеют несколько особенностей электронного строения атома:


Общая характеристика металлов и неметаллов позволяет выявить закономерности в их строении. Так, кристаллическая решетка первых - металлическая, особенная. В узлах ее находятся сразу несколько типов частиц:

  • ионы;
  • атомы;
  • электроны.

Внутри скапливается общее облако, называемое электронным газом, которое и объясняет все физические свойства этих веществ. Тип химической связи в металлах одноименный с ними.

Физические свойства

Существует ряд параметров, которые объединяют все металлы. Общая характеристика их по физическим свойствам выглядит так.


Перечисленные параметры - это и есть общая характеристика металлов, то есть все то, что их объединяет в одно большое семейство. Однако следует понимать, что из всякого правила есть исключения. Тем более что элементов подобного рода слишком много. Поэтому внутри самого семейства также есть свои подразделения на различные группы, которые мы рассмотрим ниже и для которых укажем характерные особенности.

Химические свойства

С точки зрения науки химии, все металлы - это восстановители. Причем, очень сильные. Чем меньше электронов на внешнем уровне и чем больше атомный радиус, тем сильнее металл по указанному параметру.

В результате этого металлы способны реагировать с:


Это лишь общий обзор химических свойств. Ведь для каждой группы элементов они сугубо индивидуальны.

Щелочноземельные металлы

Общая характеристика щелочноземельных металлов следующая:


Таким образом, щелочноземельные металлы - это распространенные элементы s-семейства, проявляющие высокую химическую активность и являющиеся сильными восстановителями и важными участниками биологических процессов в организме.

Щелочные металлы

Общая характеристика начинается с их названия. Его они получили за способность растворяться в воде, формируя щелочи - едкие гидроксиды. Реакции с водой очень бурные, иногда с воспламенением. В свободном виде в природе данные вещества не встречаются, так как их химическая активность слишком высока. Они реагируют с воздухом, парами воды, неметаллами, кислотами, оксидами и солями, то есть практически со всем.

Это объясняется их электронным строением. На внешнем уровне всего один электрон, который они легко отдают. Это самые сильные восстановители, именно поэтому для их получения в чистом виде понадобилось достаточно долгое время. Впервые это было сделано Гемфри Дэви уже в XVIII веке путем электролиза гидроксида натрия. Сейчас всех представителей этой группы добывают именно таким методом.

Общая характеристика щелочных металлов заключается еще и в том, что они составляют первую группу главную подгруппу периодической системы. Все они - важные элементы, образующие много ценных природных соединений, используемых человеком.

Общая характеристика металлов d- и f-семейств

К этой группе элементов относятся все те, степень окисления которых может варьироваться. Это значит, что в зависимости от условий, металл может выступать в роли и окислителя, и восстановителя. У таких элементов велика способность вступать в реакции. Среди них большое количество амфотерных веществ.

Общее название всех этих атомов - переходные элементы. Они получили его за то, что по проявляемым свойствам действительно стоят как бы посередине, между типичными металлами s-семейства и неметаллами р-семейства.

Общая характеристика переходных металлов подразумевает обозначение сходных их свойств. Они следующие:

  • большое количество электронов на внешнем уровне;
  • большой атомный радиус;
  • несколько степеней окисления (от +3 до +7);
  • находятся на d- или f-подуровне;
  • образуют 4-6 больших периодов системы.

Как простые вещества металлы данной группы очень прочные, тягучие и ковкие, поэтому имеют большое промышленное значение.

Побочные подгруппы периодической системы

Общая характеристика металлов побочных подгрупп полностью совпадает с таковой у переходных. И это неудивительно, ведь, по сути, это совершенно одно и то же. Просто побочные подгруппы системы образованы именно представителями d- и f-семейств, то есть переходными металлами. Поэтому можно сказать, что данные понятия - синонимы.

Самые активные и важные из них - первый ряд из 10 представителей от скандия до цинка. Все они имеют важное промышленное значение и часто используются человеком, особенно для выплавки.

Сплавы

Общая характеристика металлов и сплавов позволяет понять, где и как возможно использовать эти вещества. Такие соединения в последние десятки лет претерпели большие преобразования, ведь открываются и синтезируются все новые добавки для улучшения их качества.

Наиболее известными сплавами на сегодняшний день являются:

  • латунь;
  • дюраль;
  • чугун;
  • сталь;
  • бронза;
  • победит;
  • нихром и прочие.

Что такое сплав? Это смесь металлов, получаемая при плавке последних в специальных печных устройствах. Это делается для того, чтобы получить продукт, превосходящий по свойствам чистые вещества, его образующие.

Сравнение свойств металлов и неметаллов

Если говорить об общих свойствах, то характеристика металлов и неметаллов будет отличаться одним очень существенных пунктом: для последних нельзя выделить схожих черт, так как они очень разнятся по проявляемым свойствам как физическим, так и химическим.

Поэтому для неметаллов создать подобную характеристику нельзя. Можно лишь по отдельности рассмотреть представителей каждой группы и описать их свойства.

Если в периодической таблице элементов Д.И.Менделеева провести диагональ от бериллия к астату, то слева внизу по диагонали будут находиться элементы-металлы (к ним же относятся элементы побочных подгрупп, выделены синим цветом), а справа вверху – элементы-неметаллы (выделены желтым цветом). Элементы, расположенные вблизи диагонали – полуметаллы или металлоиды (B, Si, Ge, Sb и др.), обладают двойственным характером (выделены розовым цветом).

Как видно из рисунка, подавляющее большинство элементов являются металлами.

По своей химической природе металлы – это химические элементы, атомы которых отдают электроны с внешнего или предвнешнего энергетического уровней, образуя при этом положительно заряженные ионы.

Практически все металлы имеют сравнительно большие радиусы и малое число электронов (от 1 до 3) на внешнем энергетическом уровне. Для металлов характерны низкие значения электроотрицательности и восстановительные свойства.

Наиболее типичные металлы расположены в начале периодов (начиная со второго), далее слева направо металлические свойства ослабевают. В группе сверху вниз металлические свойства усиливаются, т.к увеличивается радиус атомов (за счет увеличения числа энергетических уровней). Это приводит к уменьшению электроотрицательности (способности притягивать электроны) элементов и усилению восстановительных свойств (способность отдавать электроны другим атомам в химических реакциях).

Типичными металлами являются s-элементы (элементы IА-группы от Li до Fr. элементы ПА-группы от Мg до Rа). Общая электронная формула их атомов ns 1-2 . Для них характерны степени окисления + I и +II соответственно.

Небольшое число электронов (1-2) на внешнем энергетическом уровне атомов типичных металлов предполагает легкую потерю этих электронов и проявление сильных восстановительных свойств, что отражают низкие значения электроотрицательности. Отсюда вытекает ограниченность химических свойств и способов получения типичных металлов.

Характерной особенностью типичных металлов является стремление их атомов образовывать катионы и ионные химические связи с атомами неметаллов. Соединения типичных металлов с неметаллами — это ионные кристаллы «катион металлаанион неметалла», например К + Вг — , Сa 2+ О 2-. Катионы типичных металлов входят также в состав соединений со сложными анионами — гидроксидов и солей, например Мg 2+ (OН —) 2 , (Li +)2СO 3 2-.

Металлы А-групп, образующие диагональ амфотерности в Периодической системе Ве-Аl-Gе-Sb-Ро, а также примыкающие к ним металлы (Gа, In, Тl, Sn, Рb, Вi) не проявляют типично металлических свойств. Общая электронная формула их атомов ns 2 np 0-4 предполагает большее разнообразие степеней окисления, большую способность удерживать собственные электроны, постепенное понижение их восстановительной способности и появление окислительной способности, особенно в высоких степенях окисления (характерные примеры — соединения Тl III , Рb IV , Вi v). Подобное химическое поведение характерно и для большинства (d-элементов, т. е. элементов Б-групп Периодической системы (типичные примеры — амфотерные элементы Сr и Zn).

Это проявление двойственности (амфотерности) свойств, одновременно металлических (основных) и неметаллических, обусловлено характером химической связи. В твердом состоянии соединения нетипичных металлов с неметаллами содержат преимущественно ковалентные связи (но менее прочные, чем связи между неметаллами). В растворе эти связи легко разрываются, а соединения диссоциируют на ионы (полностью или частично). Например, металл галлий состоит из молекул Ga 2 , в твердом состоянии хлориды алюминия и ртути (II) АlСl 3 и НgСl 2 содержат сильно ковалентные связи, но в растворе АlСl 3 диссоциирует почти полностью, а НgСl 2 — в очень малой степени (да и то на ионы НgСl + и Сl —).


Общие физические свойства металлов

Благодаря наличию свободных электронов («электронного газа») в кристаллической решетке все металлы проявляют следующие характерные общие свойства:

1) Пластичность — способность легко менять форму, вытягиваться в проволоку, прокатываться в тонкие листы.

2) Металлический блеск и непрозрачность. Это связано со взаимодействием свободных электронов с падающими на металл светом.

3) Электропроводность . Объясняется направленным движением свободных электронов от отрицательного полюса к положительному под влиянием небольшой разности потенциалов. При нагревании электропроводность уменьшается, т.к. с повышением температуры усиливаются колебания атомов и ионов в узлах кристаллической решетки, что затрудняет направленное движение «электронного газа».

4) Теплопроводность. Обусловлена высокой подвижностью свободных электронов, благодаря чему происходит быстрое выравнивание температуры по массе металла. Наибольшая теплопроводность — у висмута и ртути.

5) Твердость. Самый твердый – хром (режет стекло); самые мягкие – щелочные металлы – калий, натрий, рубидий и цезий – режутся ножом.

6) Плотность. Она тем меньше, чем меньше атомная масса металла и больше радиус атома. Самый легкий — литий (ρ=0,53 г/см3); самый тяжелый – осмий (ρ=22,6 г/см3). Металлы, имеющие плотность менее 5 г/см3 считаются «легкими металлами».

7) Температуры плавления и кипения. Самый легкоплавкий металл – ртуть (т.пл. = -39°C), самый тугоплавкий металл – вольфрам (t°пл. = 3390°C). Металлы с t°пл. выше 1000°C считаются тугоплавкими, ниже – низкоплавкими.

Общие химические свойства металлов

Сильные восстановители: Me 0 – nē → Me n +

Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительных реакциях в водных растворах.

I. Реакции металлов с неметаллами

1) С кислородом:
2Mg + O 2 → 2MgO

2) С серой:
Hg + S → HgS

3) С галогенами:
Ni + Cl 2 – t° → NiCl 2

4) С азотом:
3Ca + N 2 – t° → Ca 3 N 2

5) С фосфором:
3Ca + 2P – t° → Ca 3 P 2

6) С водородом (реагируют только щелочные и щелочноземельные металлы):
2Li + H 2 → 2LiH

Ca + H 2 → CaH 2

II. Реакции металлов с кислотами

1) Металлы, стоящие в электрохимическом ряду напряжений до H восстанавливают кислоты-неокислители до водорода:

Mg + 2HCl → MgCl 2 + H 2

2Al+ 6HCl → 2AlCl 3 + 3H 2

6Na + 2H 3 PO 4 → 2Na 3 PO 4 + 3H 2 ­

2) С кислотами-окислителями:

При взаимодействии азотной кислоты любой концентрации и концентрированной серной с металлами водород никогда не выделяется!

Zn + 2H 2 SO 4(К) → ZnSO 4 + SO 2 + 2H 2 O

4Zn + 5H 2 SO 4(К) → 4ZnSO 4 + H 2 S + 4H 2 O

3Zn + 4H 2 SO 4(К) → 3ZnSO 4 + S + 4H 2 O

2H 2 SO 4(к) + Сu → Сu SO 4 + SO 2 + 2H 2 O

10HNO 3 + 4Mg → 4Mg(NO 3) 2 + NH 4 NO 3 + 3H 2 O

4HNO 3 (к) + Сu → Сu (NO 3) 2 + 2NO 2 + 2H 2 O

III. Взаимодействие металлов с водой

1) Активные (щелочные и щелочноземельные металлы) образуют растворимое основание (щелочь) и водород:

2Na + 2H 2 O → 2NaOH + H 2

Ca+ 2H 2 O → Ca(OH) 2 + H 2

2) Металлы средней активности окисляются водой при нагревании до оксида:

Zn + H 2 O – t° → ZnO + H 2 ­

3) Неактивные (Au, Ag, Pt) — не реагируют.

IV. Вытеснение более активными металлами менее активных металлов из растворов их солей:

Cu + HgCl 2 → Hg+ CuCl 2

Fe+ CuSO 4 → Cu+ FeSO 4

В промышленности часто используют не чистые металлы, а их смеси - сплавы , в которых полезные свойства одного металла дополняются полезными свойствами другого. Так, медь обладает невысокой твердостью и малопригодна для изготовления деталей машин, сплавы же меди с цинком (латунь ) являются уже достаточно твердыми и широко используются в машиностроении. Алюминий обладает высокой пластичностью и достаточной легкостью (малой плотностью), но слишком мягок. На его основе готовят сплав с магнием, медью и марганцем — дуралюмин (дюраль), который, не теряя полезных свойств алюминия, приобретает высокую твердость и становится пригодным в авиастроении. Сплавы железа с углеродом (и добавками других металлов) — это широко известные чугун и сталь.

Металлы в свободном виде являются восстановителями. Однако реакционная способность некоторых металлов невелика из-за того, что они покрыты поверхностной оксидной пленкой , в разной степени устойчивой к действию таких химических реактивов, как вода, растворы кислот и щелочей.

Например, свинец всегда покрыт оксидной пленкой, для его перехода в раствор требуется не только воздействие реактива (например, разбавленной азотной кислоты), но и нагревание. Оксидная пленка на алюминии препятствует его реакции с водой, но под действием кислот и щелочей разрушается. Рыхлая оксидная пленка (ржавчина ), образующаяся на поверхности железа во влажном воздухе, не мешает дальнейшему окислению железа.

Под действием концентрированных кислот на металлах образуется устойчивая оксидная пленка. Это явление называется пассивацией . Так, в концентрированной серной кислоте пассивируются (и после этого не реагируют с кислотой) такие металлы, как Ве, Вi, Со, Fе, Мg и Nb, а в концентрированной азотной кислоте — металлы А1, Ве, Вi, Со, Сг, Fе, Nb, Ni, РЬ, Тh и U.

При взаимодействии с окислителями в кислых растворах большинство металлов переходит в катионы, заряд которых определяется устойчивой степенью окисления данного элемента в соединениях (Nа + , Са 2+ ,А1 3+ ,Fе 2+ и Fе 3+)

Восстановительная активность металлов в кислом растворе передается рядом напряжений. Большинство металлов переводится в раствор соляной и разбавленной серной кислотами, но Сu, Аg и Нg — только серной (концентрированной) и азотной кислотами, а Рt и Аи — «царской водкой».

Коррозия металлов

Нежелательным химическим свойством металлов является их , т. е. активное разрушение (окисление) при контакте с водой и под воздействием растворенного в ней кислорода (кислородная коррозия). Например, широко известна коррозия железных изделий в воде, в результате чего образуется ржавчина, и изделия рассыпаются в порошок.

Коррозия металлов протекает в воде также из-за присутствия растворенных газов СО 2 и SО 2 ; создается кислотная среда, и катионы Н + вытесняются активными металлами в виде водорода Н 2 (водородная коррозия ).

Особенно коррозионно-опасным может быть место контакта двух разнородных металлов (контактная коррозия). Между одним металлом, например Fе, и другим металлом, например Sn или Сu, помещенными в воду, возникает гальваническая пара. Поток электронов идет от более активного металла, стоящего левее в ряду напряжений (Ре), к менее активному металлу (Sn, Сu), и более активный металл разрушается (корродирует).

Именно из-за этого ржавеет луженая поверхность консервных банок (железо, покрытое оловом) при хранении во влажной атмосфере и небрежном обращении с ними (железо быстро разрушается после появления хотя бы небольшой царапины, допускающей контакт железа с влагой). Напротив, оцинкованная поверхность железного ведра долго не ржавеет, поскольку даже при наличии царапин корродирует не железо, а цинк (более активный металл, чем железо).

Сопротивление коррозии для данного металла усиливается при его покрытии более активным металлом или при их сплавлении ; так, покрытие железа хромом или изготовление сплава железа с хромом устраняет коррозию железа. Хромированное железо и сталь, содержащая хром (нержавеющая сталь ), имеют высокую коррозионную стойкость.

электрометаллургия , т. е. получение металлов электролизом расплавов (для наиболее активных металлов) или растворов солей;

пирометаллургия , т. е. восстановление металлов из руд при высокой температуре (например, получение железа в доменном процессе);

гидрометаллургия , т. е. выделение металлов из растворов их солей более активными металлами (например, получение меди из раствора СuSO 4 действием цинка, железа или алюминия).

В природе иногда встречаются самородные металлы (характерные примеры — Аg, Аu, Рt, Нg), но чаще металлы находятся в виде соединений (металлические руды ). По распространенности в земной коре металлы различны: от наиболее распространенных — Аl, Nа, Са, Fе, Мg, К, Тi) до самых редких — Вi, In, Аg, Аu, Рt, Rе.