Кто открыл явление радиоактивности. Кто открыл явление естественной радиоактивности. Заседание Академии наук

Радиоактивностью или радиоактивным распадом называется спонтанное изменение внутреннего строения или состава нестабильного ядра атома. При этом атомное ядро испускает ядерные фрагменты, гамма-кванты или элементарные частицы. Радиоактивность может быть искусственной, когда распад ядер атомов достигается путем определенных ядерных реакций. Но прежде чем прийти к искусственному радиоактивному распаду, наука познакомилась с естественной радиоактивностью – самопроизвольным распадом ядер некоторых элементов, которые встречаются в природе.

Предыстория открытия

Любое научное открытие – результат упорного труда, но история науки знает примеры, когда большую роль играла случайность. Так произошло с немецким физиком В.К. Рентгеном. Этот ученый занимался исследованием катодных лучей.

Однажды К.В. Рентген включил катодную трубку, закрытую черной бумагой. Недалеко от трубки лежали кристаллы платиноцианистого бария, которые не были связаны с прибором. Они начали светиться зеленым светом. Так было открыто излучение, возникающее при столкновении катодных лучей с какой-либо преградой. Ученый назвал его Х-лучами, а в Германии и России в настоящее время применяется термин «рентгеновское излучение».

Открытие естественной радиоактивности

В январе 1896 г. французский физик А. Пуанкаре на заседании Академии рассказал об открытии В.К. Рентгена и высказал гипотезу о связи данного излучения с явлением флюоресценции – нетеплового свечения вещества под воздействием ультрафиолета.

На заседании присутствовал физик А.А. Беккерель. Его заинтересовала эта гипотеза, ведь он уже давно исследовал явление флюоресценции на примере уранилнитрита и других солей урана. Эти вещества под воздействием солнечных лучей светятся ярким желто-зеленым светом, но как только действие солнечных лучей прекращается, соли урана перестают светиться менее чем через сотую долю секунды. Это установил еще отец А.А. Беккереля, который тоже был физиком.

Выслушав доклад А. Пуанкаре, А.А. Беккерель предположил, что соли урана, перестав светиться, могут продолжать испускать какое-то другое излучение, проходящие через непрозрачный материал. Опыт, проведенный исследователем, казалось бы, доказывал это. Ученый положил крупинки соли урана на фотопластинку, завернутую в черную бумагу и выставил на солнечный свет. Проявив пластинку, он обнаружил, что она почернела там, где лежали крупинки. А.А.Беккерель сделал вывод, что излучение, испускаемое солью урана, провоцируется солнечными лучами. Но в процесс исследования снова вторглась счастливая случайность.

Однажды А.А. Беккерелю пришлось отложить очередной опыт из-за пасмурной погоды. Подготовленную фотопластинку он убрал в ящик стола, а сверху положил покрытый солью урана медный крест. Через некоторое время он все-таки проявил пластинку – и на ней отобразились очертания креста. Поскольку крест и пластинка находились в недоступном для солнечного света месте, оставалось предположить, что уран – последний в периодической таблице элемент, испускает невидимое излучение самопроизвольно.

Исследованием этого явления наряду с А.А. Беккерелем занялись супруги Пьер и Мария Кюри. Они установили, что данным свойством обладают еще два элемента, открытые ими. Один из них был назван полонием – в честь Польши, родины Марии Кюри, а другой – радием, от латинского слова radius – луч. По предложению Марии Кюри, данное явление было названо радиоактивностью.

Радиоактивность может быть искусственной, когда распад ядер атомов достигается путем определенных ядерных реакций. Но прежде чем прийти к искусственному радиоактивному распаду, наука познакомилась с естественной радиоактивностью – самопроизвольным распадом ядер некоторых элементов, которые встречаются в природе.

Предыстория открытия

Любое научное открытие – результат упорного труда, но история науки знает , когда большую роль играла случайность. Так произошло с немецким физиком В.К. Рентгеном. Этот ученый занимался исследованием катодных лучей.

Однажды К.В. Рентген включил катодную трубку, закрытую черной бумагой. Недалеко от трубки лежали кристаллы платиноцианистого бария, которые не были связаны с прибором. Они начали светиться зеленым светом. Так было открыто излучение, возникающее при столкновении катодных лучей с какой-либо преградой. Ученый назвал его Х-лучами, а в Германии и России в настоящее время применяется термин «рентгеновское излучение».

Открытие естественной радиоактивности

В январе 1896 г. французский физик А. Пуанкаре на заседании Академии рассказал об открытии В.К. Рентгена и высказал гипотезу о связи данного излучения с явлением флюоресценции – нетеплового свечения вещества под воздействием ультрафиолета.

На заседании присутствовал физик А.А. Беккерель. Его заинтересовала эта гипотеза, ведь он уже давно исследовал явление флюоресценции на примере уранилнитрита и других солей урана. Эти вещества под воздействием солнечных лучей светятся ярким желто-зеленым светом, но как только действие солнечных лучей прекращается, соли урана перестают светиться менее чем через сотую долю секунды. Это установил еще отец А.А. Беккереля, который тоже был физиком.

Выслушав А. Пуанкаре, А.А. Беккерель предположил, что соли урана, перестав светиться, могут продолжать испускать какое-то другое излучение, проходящие через непрозрачный материал. Опыт, проведенный исследователем, казалось бы, доказывал это. Ученый положил крупинки соли урана на фотопластинку, завернутую в черную бумагу и выставил на солнечный свет. Проявив пластинку, он обнаружил, что она почернела там, где лежали крупинки. А.А.Беккерель сделал вывод, что излучение, испускаемое солью урана, провоцируется солнечными лучами. Но в процесс исследования снова вторглась счастливая случайность.

Однажды А.А. Беккерелю пришлось отложить очередной опыт из-за пасмурной погоды. Подготовленную фотопластинку он убрал в ящик стола, а сверху положил покрытый солью урана медный крест. Через некоторое время он все-таки проявил пластинку – и на ней отобразились очертания креста. Поскольку крест и пластинка находились в недоступном для солнечного света месте, оставалось предположить, что уран – последний в периодической таблице элемент, испускает невидимое излучение самопроизвольно.

Исследованием этого явления наряду с А.А. Беккерелем занялись супруги Пьер и Мария Кюри. Они установили, что данным свойством обладают еще два элемента, открытые ими. Один из них был назван полонием – в честь Польши, родины Марии Кюри, а другой – радием, от латинского слова radius – луч. По предложению Марии Кюри, данное явление было названо радиоактивностью.

Кто открыл радиоактивность и совершил столь значимое открытие в науке, Вы узнаете из этой статьи.

Кто открыл радиоактивность?

Официальной наукой считается, что супруги и открыли радиоактивность. Но данное явление перед супругами было случайно открыто несколькими учеными ранее.

Впервые явление радиоактивности открыл фотограф Абель Ньепс де Сен-Виктор, причем совершенно случайно в 1857 году, когда совершил попытку получить цветные снимки. Проводя эксперименты с солями металлов, он сделал открытие, что некоторые соли в темноте оставляют на фотобумаге отпечатки. Ими были соли урана, которые служили невидимым источником излучения радиоактивности. Но она считалась опасной для человека, поэтому на время о ней забыли.

Французский физик Антуан Беккерель занимался исследованием фосфоресцентных минералов, которые после пребывания на солнце некоторое время светятся. До этого он изучал рентгеновские излучения и считал, что они связаны между собой. С целью проверки данного предположения, Беккерель экспериментировал с солями урана, которые подтвердили его гипотезу. Так им была обнаружена радиоактивность в 1896.

Однако термин «радиоактивность» придумал и ввел в научный оборот вовсе не он, а Мари Склодовская-Кюри . Она вместе со своим супругом Пьером занималась исследованием данного явления.

Радиация существовала задолго до появления человека и сопровождает человека от рождения до смерти. Ни один из наших органов чувств не способен распознавать коротковолновое излучение. Для выявления его человеку пришлось изобрести специальные приборы, без которых никак нельзя судить ни об уровне радиации, ни об опасности, которую она в себе несет.

История изучения радиоактивности

Все живое на нашей планете возникло, развивалось и существует в условиях, иногда далеких от благоприятных. На живые организмы действуют перепады температур, атмосферные осадки, движение воздуха, изменения атмосферного давления, чередование дня и ночи и другие факторы. Среди них особое место занимает ионизирующая радиация, образующаяся за счет 25 природных радиоактивных элементов, таких как уран, радий, радон, торий и др. Естественная радиоактивность - это частицы, летящие сквозь атмосферу от Солнца и звезд Галактики. Это два источника ионизирующего облучения всего живого и неживого.

Рентгеновское, или γ-излучение, представляет собой электромагнитные волны с высокой частотой и чрезвычайно большой энергией. Все виды ионизирующего излучения обусловливают ионизацию и изменение облучаемых объектов. Считается, что все живое на Земле приспособилось к действию ионизирующих излучений и не реагирует на них. Существует даже гипотеза, что естественная радиоактивность - это двигатель эволюции, благодаря которому возникло такое большое количество видов, самых разнообразных по форме и способам жизни организмов, поскольку мутации есть не что иное, как возникновение новых признаков организма, которые могут привести к появлению совершенно нового вида.

В течение XVIII-XIX столетий, а особенно сейчас, естественный радиационный фон на Земле повысился и продолжает увеличиваться. Причиной стала прогрессирующая индустриализация всех развитых стран, в результате которой при увеличении добычи металлических руд, угля, нефти, строительных материалов, удобрений и других полезных ископаемых на ее поверхность в больших количествах поступают различные минералы, содержащие природные радиоактивные элементы. При сжигании минеральных источников энергии, особенно таких, как уголь, торф, горючие сланцы, в атмосферу попадает много различных веществ, в том числе и радиоактивных. В середине XX века была открыта искусственная радиоактивность. Это привело к созданию атомной бомбы в США, а затем и в других странах, а также к развитию атомной энергетики. Во время атомных взрывов, работы АЭС (особенно при авариях), в окружающей среде, кроме постоянного естественного фона, накапливается искусственная радиоактивность. Это приводит к появлению очагов и больших территорий с высоким уровнем радиоактивности.

Что такое радиоактивность, кто открыл это явление?

Радиоактивность была открыта в 1896 году физиком из Франции А. Беккерелем. Он определил, что главным источником радиационного облучения является гамма-излучение вследствие его большой проникающей способности. Радиоактивность - это излучение, которому постоянно подвергается человек в результате воздействия природных источников радиации (космические и солнечные лучи, земное излучение). Его называют естественным радиационным фоном. Он существовал всегда: с момента образования нашей планеты и до настоящего времени. Человек, как и любой другой организм, постоянно находится под действием естественного радиационного фона. По данным Научного Комитета ООН по действию атомной радиации (НКДАР), радиоактивное облучение человека, вызванное действием природных источников радиоактивности, составляет около 83 % всей радиации, полученной человеком. Остальные 17 % вызываются техногенными источниками радиоактивности. Открытие и практическое применение ядерной энергии вызвало много проблем. С каждым годом расширяется сфера контактов человечества и всего живого с ионизирующим излучением. Уже сегодня из-за загрязнения почвы и атмосферы радиоактивными продуктами атомной энергетики и экспериментальных ядерных взрывов, большого распространения лучевого лечения и медицинской диагностики, применения новых стройматериалов радиационное давление увеличилось более чем в два раза.

Виды радиоактивности

На получение человеком предельных доз действует искусственная и естественная радиоактивность. Это процесс, который активизирует изучение биологического воздействия радиации все более широким кругом лиц. Каждый человек должен знать, какая есть связь между мощностью экспозиционной дозы излучения (МЭД) и эквивалентной дозой облучения, которая является определяющей для оценки ущерба, причиненного человеку радиацией.

β-частицы имеют энергию примерно от 0,01 до 2,3 МэВ, движутся со скоростью света. На своем пути создают в среднем 50 пар ионов на 1 см пути и не так быстро тратят свою энергию, как α-частицы. Чтобы задержать β- облучение, требуется металл толщиной не менее 3 мм.

Естественная радиоактивность вещества - это когда α-частицы выпускаются ядрами и имеют энергию от 4 до 9 МэВ. Выброшеные из ядер с большой начальной скоростью (до 20000 км/с), α-частицы тратят энергию на ионизацию атомов вещества, которые встречаются на их пути (в среднем 50 000 пар ионов на 1 см пути), и останавливаются.

γ-излучение принадлежит к электромагнитному излучению с длиной волны меньше 0,01 нм, энергия γ-кванта изменяется примерно от 0,02 до 2,6 МэВ. Фотоны γ-излучения поглощаются в одном или в нескольких актах взаимодействия с атомами вещества. Вторичные электроны ионизируют атомы окружающей среды. Частично гамма-излучение задерживается лишь толстой свинцовой (толщиной более 200 мм) или бетонной плитой.

Явление радиоактивности - это излучения, сопровождающиеся освобождением разного количества энергии и обладающие различной проникающей способностью, поэтому они оказывают различное влияние на организмы и экосистемы в целом. В дозиметрии пользуются величинами, которые количественно характеризуют радиоактивное свойство вещества и вызванные действием радиации эффекты: активность, экспозиционная доза излучения, поглощенная доза излучения, эквивалентная доза облучения. Открытие радиоактивности и возможность искусственного превращения ядер способствовали разработке методов и техники измерения радиоактивности элементов.

Лучевая болезнь

Радиоактивность - это излучение, которое является причиной лучевой болезни. Различают хроническую и острую формы этой болезни. Хроническая лучевая болезнь начинается в результате долгого облучения организма малыми (от 1 мЗв до 5 мЗв в сутки) дозами радиации после накопления суммарной дозы 0,7 ... 1,0 Сб. Острая лучевая болезнь вызывается однократным интенсивным облучением от 1-2 Зв дозе более 6 Сб. Выполненные расчеты эквивалентной дозы облучения показывают, что дозы, которые получает человек в обычных условиях в городе, к счастью, значительно ниже, чем те, что вызывают лучевую болезнь.

Мощность эквивалентной дозы, вызванной естественным излучением, - от 0,44 до 1,75 мЗв в год. Во время медицинской диагностики (рентгеновские исследования, лучевая терапия и т.д.) человек получает примерно 1,4 мЗв в год. Добавим, что в строительных материалах (кирпиче, бетоне) в небольших дозах также присутствуют радиоактивные элементы. Поэтому доза облучения возрастает еще на 1,5 мЗв в течение года.

Для фактологической оценки вредности радиоактивного излучения используют такую характеристику, как риск. Под риском обычно понимают вероятность нанесения вреда здоровью или жизни человека в течение определенного отрезка времени (как правило, в течение одного календарного года), рассчитывая его по формуле относительной частоты наступления опасного случайного события в совокупности всех возможных событий. Основным проявлением ущерба, причиненного радиоактивным излучением, является заболевание человека раком.

Группы радиотоксичности

Радиотоксичность - свойство радиоактивных изотопов вызвать патологические изменения при поступлении их в организм. Радиотоксичность изотопов зависит от ряда их характеристик и факторов, главными из которых являются следующие:

1) время поступления в организм радиоактивных веществ;

3) схема радиоактивного распада в организме;
4) средняя энергия одного акта распада;
5) распределение радиоактивных веществ по системам и органам;
6) пути поступления в организм радиоактивных веществ;
7) время пребывания в организме радионуклида;

Все радионуклиды как потенциальные источники внутреннего облучения распределяются на четыре группы радиотоксичности:

  • группа А - с особо высокой радиотоксичностью, min активность 1 кБк;
  • группа Б - с высокой радиотоксичностью, min активность не более 10 кБк;
  • группа В - со средней радиотоксичностью, min активность не более 100 кБк;
  • группа Г - с малой радиотоксичностью, min активность не более 1000 кБк.

Принципы нормирования радиактивного воздействия

В результате экспериментов на животных и изучения последствий облучения людей при ядерных взрывах, авариях на предприятиях ядерно-топливного цикла, лучевой терапии злокачественных опухолей, а также исследований других видов радиоактивности были установлены реакции организма на острое и хроническое облучение.

Нестохастические, или детерминистические эффекты имеют зависимость от дозы и проявляются в облученном организме за относительно короткий срок. С увеличением дозы облучения возрастает степень поражения органов и тканей - наблюдается эффект градуировки.

Стохастические, или вероятные (случайные) эффекты относятся к удаленным последствий облучения организма. В основе возникновения стохастических эффектов лежат вызванные облучением мутации и другие нарушения в клеточных структурах. Они возникают как в соматических (от латинского somatos -тело), так и в половых клетках и приводят к образованию в облученном организме злокачественных опухолей, а у потомства - аномалий развития и других нарушений, которые передаются по наследству (генетические эффекты). Принято считать, что порога мутагенного действия радиации не существует, а значит, нет и вполне безопасных доз. При дополнительном действии ионизирующего излучения как одного из многих факторов мутагенеза в дозе 1 сЗв (1 бэр) риск возникновения злокачественных опухолей возрастает на 5 %, а проявление генетических дефектов - на 0,4 %.

Риск гибели людей от дополнительного воздействия ионизирующего облучения в таких малых дозах значительно меньше риска их гибели в самом безопасном производстве. Но он есть, потому дозовые нагрузки на организм человека строго регламентированы. Эту функцию выполняют нормы радиационной безопасности.

НРБУ-97 направлены на недопущение возникновения детерминированных (соматических) эффектов и ограничение на принятом уровне возникновения стохастических эффектов. Радиационно-гигиенические регламенты, установленные НРБУ-97, построены на следующих трех принципах защиты:

Принцип оправданности;
. принцип непревышения;
. принцип оптимизации.

Естественная радиоактивность: уровни, дозы, риски

Система радиационной защиты граждан, построенная на результатах медико-биологических исследований, кратко формулируется так: степень возможного негативного влияния облучения на здоровье человека определяет только величина дозы, независимо от того, каким источником ионизирующего излучения она сформирована - естественным или искусственным. Техногенно усиленные источники природного происхождения относятся к управляемым компонентам суммарной дозы, и их вклад можно уменьшить, приняв соответствующие меры. Например, для радона в воздухе помещений и основных доз, которые формируют источники, оговорено две ситуации облучения: облучение в уже эксплуатируемых строениях и новых домах, которые только сдаются в эксплуатацию.

Нормативы требуют, чтобы эквивалентная равновесная активность радона в воздухе (ЭРОА) для домов эксплуатируемых не превышала 100 Бк/м3, что соответствует величине 250 Бк/м3 в сроке объемной активности, который применяется в большинстве европейских стран. Для сравнения, в новых "Основных стандартах безопасности" (BSS) МАГАТЭ референтный уровень для радона определен в 300 Бк/м3.

Для новых домов, детских учреждений и больниц эта величина равна 50 Бк/м3 (или 125 Бк/м3 газа радона). Измерение радиоактивности радона, по НРБУ-97, как и по нормативным документам других стран мира, проводится только интегральными методами. Это требование очень важно, потому что уровень радона в воздухе одной квартиры или дома может изменяться в 100 раз в течение суток.

Радон - 222

В ходе исследований, которые проводились в России в последние годы, были проанализированы структура и величина существующих доз облучения и установлено, что для населения в помещениях главное опасное вещество, которое создает радиоактивность, - это радон. Содержание этого вещества в воздухе можно легко снизить, если увеличить вентилирование помещения или ограничить поступление газа герметизацией подвального пространства. По данным отдела радиационной гигиены, порядка 23 % жилого фонда не соответствуют требованиям действующей нормативной базы по содержанию радона в воздухе помещений. Если жилой фонд довести до действующих нормативов, убытки можно уменьшить вдвое.

Расмотрим, почему же так вреден радон? Радиоактивность - это распад естественных радионуклидов уранового ряда, при котором радон-222 преобразуется в газ. При этом он образует коротко существующие дочерние продукты (ДПР): полоний, висмут, свинец, которые, присоединяясь к частицам пыли или влаги, образуют радиоактивный аэрозоль. Попадая в легкие, эта смесь через небольшой период полураспада ДПР радона-222 приводит к относительно высоким дозам облучения, которые могут быть причиной дополнительного риска заболеваний раком легких.

По данным обследования жилищного фонда отдельных регионов (28000 домов) специалистами института гигиены и медицинской экологии, средневзвешенная по отдельным областям среднегодовая эффективная доза облучения населения от радона составляет 2,4 мЗв/год, для сельского населения эта величина выше почти вдвое и составляет 4,1 мЗв/год. Для отдельных регионов дозы радона варьируются в достаточно широких пределах - от 1,2 мЗв/год до 4,3 мЗв/год, а индивидуальные дозы населения могут превышать дозовые лимиты для профессионалов категории А (20 мЗв/год).

Если оценить по принятым в мировой практике методам смертность от рака легких, обусловленного облучением радоном-222, то она составляет порядка 6000 случаев в год. Необходимо также учитывать, что в последние годы получены знания о влиянии радона. Так, по данным некоторых эпидемиологических исследований установлено, что радон может вызывать лейкемию у детей. По данным AS Evrard, связь между радоном и лейкемией у детей имеет прирост 20 % на каждые 100 Бк/м3. По данным Raaschou-Nielsen, этот прирост больше 34 % на каждые 100 Бк/м3.

Радиоактивность и шлаки

Во всех странах очень остро стоит проблема переработки и захоронения металлических отходов, имеющих радиоактивность. Это тоже источник излучения - не только от аварий, как например, на Чернобыльской АЭС, но и от действующих атомных электростанций, где постоянно проводятся плановые замены агрегатов. Как при этом быть со старыми металлическими узлами и конструкциями, которые имеют высокую радиоактивность? Специалисты из института электросварки разработали плазменно-дуговой способ плавки в водоохлаждаемом тигле, который обеспечивает удаление в шлаки металла или сплава, которые имеют радиоактивность. Это физика самой безопасной очистки. При этом можно использовать различные шлаковые композиции с высокой ассимилирующей способностью. Этим способом можно удалить даже те радиоактивные элементы, которые находятся в трещинах и углублениях поверхности. Для разрезания металлических отходов предусмотрено применять плазменную резку и взрыв под водой, электрогидравлическую резку и уплотнение разрезаемых узлов и конструкций. Эти высокопроизводительные технологии исключают образование пыли при работе, следовательно, предотвращают загрязнение окружающей среды. Стоимость переработки радиоактивных отходов по отечественному проекту ниже, чем у иностранных разработчиков.

Основные принципы защиты от закрытых источников ионизирующих излучений

Закрытые источники ионизирующих излучений обусловливают лишь внешнее облучение организма. Принципы защиты можно вывести из таких основных закономерностей распределения излучений и характера их взаимодействия с веществом:

Доза внешнего облучения пропорциональна времени и интенсивности воздействия излучения;
. интенсивность излучения от источника прямо пропорциональна количеству частиц или квантов или частиц;
. проходя через вещество, излучения им поглощаются, и их пробег зависит от плотности этого вещества.

Основные принципы защиты от внешнего облучения базируются на:

а) защите временем;
б) защите количеством;
в) защите экранами (экранирование источников материалами);
г) защите расстоянием (увеличение расстояния до максимально возможных величин).

В комплексе защитных мероприятий следует учитывать и вид излучения радиоактивных веществ (α-, β-частицы, γ-кванты). Защита от внешнего излучения α-частицами не нужна, поскольку пробег их в воздухе составляет 2,4-11 см, а в воде и тканях живого организма - только 100 мк. Спецодежда полностью защищает от них.

При внешнем облучении β-частицы влияют на кожный покров и роговицу глаз и в больших дозах вызывают сухость и ожоги кожи, ломкость ногтей, катаракту. Для защиты от β-частиц используют резиновые перчатки, очки и экраны. В случае особо мощных потоков β-частиц следует применять дополнительные экраны, предназначенные для защиты от тормозного рентгеновского излучения: фартуки и перчатки из просвинцованной резины, просвинцованное стекло, ширмы, боксы и тому подобное.

Защита от внешнего γ-излучения может обеспечиваться сокращением времени непосредственной работы с источниками, применением защитных экранов, поглощающих излучение, увеличением расстояния от источника.

Вышеупомянутые способы защиты можно применять отдельно или в различных комбинациях, но так, чтобы дозы внешнего фотонного облучения лиц категории А не превышали 7 мР в день и 0,04 Р в неделю. Защита путем уменьшения времени непосредственной работы с источниками фотонного излучения достигается скоростью манипуляций с препаратом, сокращением продолжительности рабочего дня и рабочей недели.

Радиоактивность была открыта в 1896 году французским физиком А. Беккерелем. Он занимался исследованием связи люминесценции и недавно открытых рентгеновских лучей.

Беккерелю пришла в голову мысль: не сопровождается ли всякая люминесценция рентгеновскими лучами? Для проверки своей догадки он взял несколько соединений, в том числе одну из солей урана, фосфоресцирующую жёлто-зелёным светом. Осветив её солнечным светом, он завернул соль в чёрную бумагу и положил в тёмном шкафу на фотопластинку, тоже завёрнутую в чёрную бумагу. Через некоторое время, проявив пластинку, Беккерель действительно увидел изображение куска соли. Но люминесцентное излучение не могло пройти через чёрную бумагу, и только рентгеновские лучи могли в этих условиях засветить пластинку. Беккерель повторил опыт несколько раз и с одинаковым успехом. В конце февраля 1896 г. на заседании Французской академии наук он сделал сообщение о рентгеновском излучении фосфоресцирующих веществ.

Через некоторое время в лаборатории Беккереля была случайно проявлена пластинка, на которой лежала урановая соль, не облучённая солнечным светом. Она, естественно, не фосфоресцировала, но отпечаток на пластинке получился. Тогда Беккерель стал испытывать разные соединения и минералы урана (в том числе не проявляющие фосфоресценции), а также металлический уран. Пластинка неизменно засвечивалась. Поместив между солью и пластинкой металлический крестик, Беккерель получил слабые контуры крестика на пластинке. Тогда стало ясно, что открыты новые лучи, проходящие сквозь непрозрачные предметы, но не являющиеся рентгеновскими.

Беккерель установил, что интенсивность излучения определяется только количеством урана в препарате и совершенно не зависит от того, в какие соединения он входит. Таким образом, это свойство было присуще не соединениям, а химическому элементу -- урану.

Своим открытием Беккерель делится с учёными, с которыми он сотрудничал. В 1898 г. Мария Кюри и Пьер Кюри обнаружили радиоактивность тория, позднее ими были открыты радиоактивные элементы полоний и радий.

Они выяснили, что свойством естественной радиоактивности обладают все соединения урана и в наибольшей степени сам уран. Беккерель же вернулся к интересующим его люминофорам. Правда, он сделал ещё одно крупное открытие, относящееся к радиоактивности. Однажды для публичной лекции Беккерелю понадобилось радиоактивное вещество, он взял его у супругов Кюри и положил пробирку в жилетный карман. Прочтя лекцию, он вернул радиоактивный препарат владельцам, а на следующий день обнаружил на теле под жилетным карманом покраснение кожи в форме пробирки. Беккерель рассказал об этом Пьеру Кюри, и тот поставил на себе опыт: в течение десяти часов носил привязанную к предплечью пробирку с радием. Через несколько дней у него тоже появилось покраснение, перешедшее затем в тяжелейшую язву, от которой он страдал в течение двух месяцев. Так впервые было открыто биологическое действие радиоактивности.

Но и после этого супруги Кюри мужественно делали своё дело. Достаточно сказать, что Мария Кюри умерла от лучевой болезни (дожив, тем не менее, до 66 лет).

В 1955 г. были обследованы записные книжки Марии Кюри. Они до сих пор излучают, благодаря радиоактивному загрязнению, внесённому при их заполнении. На одном из листков сохранился радиоактивный отпечаток пальца Пьера Кюри.

Понятие радиоактивности и типы излучений.

Радиоактивность - способность некоторых атомных ядер самопроизвольно (спонтанно) превращаться в другие ядра с испусканием различных видов радиоактивных излучений и элементарных частиц. Радиоактивность подразделяют на естественную (наблюдается у неустойчивых изотопов, существующих в природе) и искусственную (наблюдается у изотопов, полученных посредством ядерных реакций).

Радиоактивное излучение разделяют на три типа:

  • -излучение - отклоняется электрическим и магнитными полями, обладает высокой ионизирующей способностью и малой проникающей способностью; представляет собой поток ядер гелия; заряд -частицы равен +2е, а масса совпадает с массой ядра изотопа гелия 42Не.
  • -излучение - отклоняется электрическим и магнитным полями; его ионизирующая способность значительно меньше (приблизительно на два порядка), а проникающая способность гораздо больше, чем у -частиц; представляет собой поток быстрых электронов.
  • -излучение - не отклоняется электрическим и магнитными полями, обладает относительно слабой ионизирующей способностью и очень большой проникающей способностью; представляет собой коротковолновое электромагнитное излучение с чрезвычайно малой длиной волны

Период полураспада Т1/2 - время, за которое исходное число радиоактивных ядер в среднем уменьшается вдвое.

Альфа излучение - поток положительно заряженных частиц, образованная 2 протонами и 2 нейтронами. Частица идентична ядру атома гелия-4 (4He2+). Образуется при альфа-распаде ядер. Впервые альфа-излучение открыл Э. Резерфорд. Изучая радиоактивные элементы, в частности изучая такие радиоактивные элементы как уран радий и актиний, Э. Резерфорд пришел к выводу что все радиоактивные элементы испускают альфа- и бета-лучи. И, что еще более важно, радиоактивность любого радиоактивного элемента через определенный конкретный период времени уменьшается. Источником альфа-излучения являются радиоактивные элементы. В отличие от других видов ионизирующего излучения альфа-излучение является наиболее безобидным. Оно опасно лишь при попадании в организм такого вещества (вдыхание, съедание, выпивание, втирание и т.д.), так как пробег альфа частицы, например с энергией 5 МэВ, в воздухе составляет 3,7 см, а в биологической ткани 0,05 мм. Альфа-излучение попавшего в организм радионуклида наносит поистине кошмарные разрушения, т.к. коэффициент качества альфа излучения с энергией меньше 10 МэВ равен 20мм. а потери энергии происходят в очень тонком слое биологической ткани. Оно практически сжигает его. При поглощении альфа-частиц живыми организмами могут возникнуть мутагенные (факторы, вызывающий мутацию), канцерогенные (вещества или физический агент (излучение), способные вызвать развитие злокачественных новообразований) и другие отрицательные эффекты. Проникающая способность А.-и. невелика т.к. задерживается листом бумаги.

Бета-частица (в-частица), заряженная частица, испускаемая в результате бета-распада. Поток бета-частиц называется бета-лучи или бета-излучение.

Отрицательно заряженные бета-частицы являются электронами (в--), положительно заряженные -- позитронами (в+).

Энергии бета-частиц распределены непрерывно от нуля до некоторой максимальной энергии, зависящей от распадающегося изотопа; эта максимальная энергия лежит в диапазоне от 2,5 кэВ (для рения-187) до десятков МэВ (для короткоживущих ядер, далёких от линии бета-стабильности).

Бета-лучи под действием электрического и магнитного полей отклоняются от прямолинейного направления. Скорость частиц в бета-лучах близка к скорости света. Бета-лучи способны ионизировать газы, вызывать химические реакции, люминесценцию, действовать на фотопластинки.

Значительные дозы внешнего бета-излучения могут вызвать лучевые ожоги кожи и привести к лучевой болезни. Ещё более опасно внутреннее облучение от бета-активных радионуклидов, попавших внутрь организма. Бета-излучение имеет значительно меньшую проникающую способность, чем гамма-излучение (однако на порядок большую, чем альфа-излучение). Слой любого вещества с поверхностной плотностью порядка 1 г/см2.

Например, несколько миллиметров алюминия или несколько метров воздуха практически полностью поглощает бета-частицы с энергией около 1 МэВ.

Гамма - излучение вид электромагнитного излучения с чрезвычайно маленькой длиной волны -- < 5Ч10-3 нм и вследствие этого ярко выраженными корпускулярными и слабо выраженными волновыми свойствами. Гамма-квантами являются фотоны высокой энергии. Обычно считается, что энергии квантов гамма-излучения превышают 105 эВ, хотя резкая граница между гамма- и рентгеновским излучением не определена. На шкале электромагнитных волн гамма-излучение граничит с рентгеновским излучением, занимая диапазон более высоких частот и энергий. В области 1-100 кэВ гамма-излучение и рентгеновское излучение различаются только по источнику: если квант излучается в ядерном переходе, то его принято относить к гамма-излучению, если при взаимодействиях электронов или при переходах в атомной электронной оболочке -- то к рентгеновскому излучению. Очевидно, физически кванты электромагнитного излучения с одинаковой энергией не отличаются, поэтому такое разделение условно.

Гамма-излучение испускается при переходах между возбуждёнными состояниями атомных ядер (энергии таких гамма-квантов лежат в диапазоне от ~1 кэВ до десятков МэВ). При ядерных реакциях (например, при аннигиляции электрона и позитрона, распаде нейтрального пиона и т.д.), а также при отклонении энергичных заряженных частиц в магнитных и электрических полях.

Гамма-лучи в отличие от б-лучей и в-лучей не отклоняются электрическими и магнитными полями и характеризуются большей проникающей способностью при равных энергиях и прочих равных условиях. Гамма-кванты вызывают ионизацию атомов вещества. Основные процессы, возникающие при прохождении гамма-излучения через вещество:

Фотоэффект (гамма-квант поглощается электроном атомной оболочки, передавая ему всю энергию и ионизируя атом).

Комптоновское рассеяние (гамма-квант рассеивается на электроне, передавая ему часть своей энергии).

Рождение электрон-позитронных пар (в поле ядра гамма-квант с энергией не ниже 2mec2=1,022 МэВ превращается в электрон и позитрон).

Фотоядерные процессы (при энергиях выше нескольких десятков МэВ гамма-квант способен выбивать нуклоны из ядра).

Гамма-кванты, как и любые другие фотоны, могут быть поляризованы.

Облучение гамма-квантами, в зависимости от дозы и продолжительности, может вызвать хроническую и острую лучевую болезнь. Стохастические эффекты облучения включают различные виды онкологических заболеваний. В то же время гамма-облучение подавляет рост раковых и других быстро делящихся клеток. Гамма-излучение является мутагенным и тератогенным фактором.

Защитой от гамма-излучения может служить слой вещества. Эффективность защиты (то есть вероятность поглощения гамма-кванта при прохождении через неё) увеличивается при увеличении толщины слоя, плотности вещества и содержания в нём тяжёлых ядер (свинца, вольфрама, обеднённого урана и пр.).

Единицей измерения радиоактивности служит беккерель (Бк, Bq). Один беккерель равен одному распаду в секунду. Содержание активности в веществе часто оценивают на единицу веса вещества (Бк/кг) или его объема (Бк/л, Бк/куб.м). Часто используют внесистемную единицу - кюри (Ки, Ci). Один кюри соответствует числу распадов в секунду в 1 грамме радия. 1 Ки = 3,7.1010 Бк.

Соотношения между единицами измерения приведены ниже в таблице.

Широко известная внесистемная единица рентген (Р, R) служит для определения экспозиционной дозы. Один рентген соответствует дозе рентгеновского или гамма-излучения, при которой в 1 см3 воздуха образуется 2.109 пар ионов. 1 Р = 2, 58.10-4 Кл/кг.

Чтобы оценить действие излучения на вещество, измеряют поглощенную дозу, которая определяется как поглощенная энергия на единицу массы. Единица поглощенной дозы называется рад. Один рад равен 100 эрг/г. В системе СИ используют другую единицу - грей (Гр, Gy). 1 Гр = 100 рад = 1 Дж/кг.

Биологический эффект различных видов излучения неодинаков. Это связано с отличиями в их проникающей способности и характере передачи энергии органам и тканям живого организма. Поэтому для оценки биологических последствий используют биологический эквивалент рентгена - бэр. Доза в бэрах эквивалентна дозе в радах, умноженной на коэффициент качества излучения. Для рентгеновских, бета- и гамма-лучей коэффициент качества считается равным единице, то есть бэр соответствует раду. Для альфа-частиц коэффициент качества равен 20 (это означает, что альфа-частицы вызывают в 20 раз более сильное повреждение живой ткани, чем та же поглощенная доза бета- или гамма-лучей). Для нейтронов коэффициент составляет от 5 до 20 в зависимости от энергии. В системе СИ для эквивалентной дозы введена специальная единица, называемая зиверт (Зв, Sv). 1 Зв = 100 бэр. Эквивалентная доза в зивертах соответствует поглощенной дозе в греях, умноженной на коэффициент качества.