Хромосомные аномалии при миелодиспластическом синдроме - прогноз. Остановка развития зародыша Трисомия по 7 хромосоме

В основу статьи положены работы проф. Буэ.

Остановка развития зародыша в дальнейшем приводит к изгнанию плодного яйца, что проявляется в виде самопроизвольного выкидыша. Однако во многих случаях остановка развития происходит на очень ранних сроках и сам факт зачатия остается неизвестным для женщины. В большом проценте случаев такие выкидыши связаны с хромосомными аномалиями у зародыша.

Самопроизвольные выкидыши

Самопроизвольные выкидыши, определением которых служит "самопроизвольное прерывание беременности между сроком зачатия и сроком жизнеспособности плода", во многих случаях с большим трудом поддаются диагностике: большое число выкидышей происходит на очень ранних сроках: задержки месячных не происходит, или эта задержка настолько мала, что сама женщина не подозревает о беременности.

Клинические данные

Изгнание плодного яйца может произойти внезапно, или ему могут предшествовать клинические симптомы. Чаще всего угроза выкидыша проявляется кровянистыми выделениями и болями внизу живота, переходящими в схватки. Далее следуют изгнание плодного яйца и исчезновение признаков беременности.

Клиническое обследование может выявить несоответсвие между предполагаемым сроком беременности и размерами матки. Уровни гормонов в крови и моче могут быть резко снижены, указывая на отсутствие жизнеспособности зародыша. Ультразвуковое исследование позволяет уточнить диагноз, выявляя либо отсутствие зародыша ("пустое плодное яйцо"), либо отставание в развитии и отсутствие сердцебиения

Клинические проявления самопроизвольного выкидыша значительно варьируют. В одних случаях выкидыш проходит незамеченным, в других — сопровождается кровотечением и может потребовать выскабливания полости матки. Хронология симптоматики может косвенно указывать на причину самопроизвольного выкидыша: кровянистые выделения с ранних сроков беременности, остановка роста матки, исчезновение признаков беременности, "немой" период в течение 4-5 недель, а затем изгнание плодного яйца чаще всего свидетельствуют о хромосомных нарушениях зародыша, а соответствие срока развития зародыша сроку выкидыша говорит в пользу материнских причин невынашивания беременности.

Анатомические данные

Анализ материала самопроизвольных выкидышей, сбор которого был начат в начале двадцатого века в Институте Карнеги, позволил выявить огромный процент аномалий развития среди абортусов ранних сроков

В 1943 году Хертиг и Шелдон опубликовали результаты патологоанатомического исследования материала 1000 выкидышей на ранних сроках. Материнские причины невынашивания беременности были ими исключены в 617 случаев. Современные данные указывают на то, что мацерированные зародыши во внешне нормальных оболочках тоже могут быть связаны с хромосомными аномалиями, что в сумме составляет около 3/4 всех случаев данного исследования.

Морфологическое исследование 1000 абортусов (по Hertig и Sheldon, 1943)
Грубые патологические нарушения плодного яйца:
плодное яйцо без зародыша или с недифференцированным зародышем
489
Локальные аномалии зародышей 32
Аномалии плаценты 96 617
Плодное яйцо без грубых аномалий
с мацерированными зародышами 146
763
с немацерированными зародышами 74
Аномалии матки 64
Другие нарушения 99

Дальнейшие исследования Микамо и Миллера и Полланда позволили уточнить связь между сроком выкидыша и частотой нарушений развития зародыша. Оказалось, что чем меньше срок выкидыша, тем частота аномалий выше. В материалах выкидышей, происшедших до 5-й недели после зачатия макроскопические морфологические аномалии плодного яйца встречаются в 90% случаев, при сроке выкидыша от 5 до 7 недель после зачатия — в 60%, при сроке больше 7 недель после зачатия — менее, чем в 15—20%.

Важность значения остановки развития зародыша в ранних самопроизвольных выкидышах была показана прежде всего фундаментальными исследованиями Артура Хертига, который в 1959 г. опубликовал результаты исследования человеческих зародышей до 17 дней после зачатия. Это был плод его 25-летней работы.

У 210 женщин в возрасте до 40 лет, идущих на операцию гистерэктомии (удаления матки) дата операции была сопоставлена с датой овуляции (возможного зачатия). После операции матки подвергались самому тщательному гистологическому исследованию на предмет выявления возможной беременности малого срока. Из 210 женщин только 107 были оставлены в исследовании в связи с обнаружением признаков овуляции, и отсутствием грубых нарушений труб и яичников, препятствующих наступлению беременности. Было обнаружено 34 плодных яйца, из них 21 плодное яйцо было внешне нормальным, а 13 (38%) имело явные признаки аномалий, которые, по мнению Хертига, обязательно привели бы к выкидышу или на этапе имплантации или вскоре после имплантации. Поскольку в то время не было возможности проведения генетического исследования плодных яиц, причины нарушений развития зародышей оставались неизвестными.

При обследовании женщин с подтвержденной фертильностью (все пациентки имели по несколько детей) было обнаружено, что одно из трех плодных яиц имеет аномалии и подвергается выкидышу до появления признаков беременности.

Эпидемиологические и демографические данные

Нечеткая клиническая симптоматика ранних самопроизвольных выкидышей приводит к тому, что достаточно большой процент выкидышей на малых сроках проходит незамеченным женщинами.

В случае клинически подтвержденных беременностей около 15% всех беременностей заканчивается выкидышем. Большая часть самопроизвольных выкидышей (около 80%) происходит в первом триместре беременности. Однако если принять во внимание тот факт, что выкидыши часто случаются спустя 4-6 недель после остановки развития беременности, можно сказать, что с первым триместром связано более 90% всех самопроизвольных выкидышей.

Специальные демографические исследования позволили уточнить частоту внутриутробной смертности. Так, Френч и Бирман в 1953 — 1956 гг. регистрировали все беременности у женщин острова Канаи и показали, что из 1000 беременностей, диагностированных при сроке после 5 недель, 237 не увенчались рождением жизнеспособного ребенка.

Анализ результатов нескольких исследований позволил Леридону составить таблицу внутриутробной смертности, включающей в себя и неудачи оплодотворения (половой акт в оптимальные сроки — в течение суток после овуляции).

Полная таблица внутри утробной смертности (на 1000 яйцеклеток, подвергшихся риску оплодотворения) (по Leridon, 1973)
Недели после зачатия Остановка развития с последующим изгнанием Процент продолжающихся беременностей
16* 100
0 15 84
1 27 69
2 5,0 42
6 2,9 37
10 1,7 34,1
14 0,5 32,4
18 0,3 31,9
22 0,1 31,6
26 0,1 31,5
30 0,1 31,4
34 0,1 31,3
38 0,2 31,2
* — неудачи зачатия

Все эти данные указывают на огромную частоту самопроизвольных выкидышей и на важную роль нарушений развития плодного яйца в этой патологии.

Эти данные отражают общую частоту нарушений развития, не выделяя среди них конкретные экзо- и эндогенные факторы (иммунологические, инфекционные, физические, химические и т. д.).

Важно отметить, что независимо от причины повреждающего воздействия, при исследовании материала выкидышей обнаруживается очень большая частота генетический нарушений (хромосомных аберраций (на сегодня изучены лучше всего) и генных мутаций) и аномалий развития, как, например, дефекты развития нервной трубки.

Хромосомные аномалии, ответственные за остановку развития беременности

Цитогенетические исследования материала выкидышей позволили уточнить характер и частоту тех или иных хромосомных аномалий.

Общая частота

При оценке результатов больших серий анализов следует иметь в виду следующее. На результаты исследований подобного рода могут оказать значительное влияние следующие факторы: способ сбора материала, относительная частота более ранних и более поздних выкидышей, доля материала искусственных абортов в исследовании, часто не поддающаяся точной оценке, успех культивирования клеточных культур абортуса и хромосомного анализа материала, тонкие методы обработки мацерированного материала.

Общая оценка частоты хромосомных аберраций при невынашивании беременности составляет около 60%, а в первом триместре беременности — от 80 до 90%. Как будет показано ниже, анализ, основанный на стадийности развития зародыша, позволяет сделать гораздо более точные выводы.

Относительная частота

Практически все большие исследования хромосомных аберраций в материале выкидышей дали поразительно сходные результаты относительно характера нарушений. Количественные аномалии составляют 95% всех аберраций и распределяются следующим образом:

Количественные хромосомные аномалии

Различные типы количественных хромосомных аберраций могут возникать в результате:

  • сбоев мейотического деления : речь идет о случаях "нон-дисджанкшн" (неразделения) парных хромосом, что приводит к появлению либо трисомии, либо моносомии. Неразделение может происходить как во время первого, так и во время второго мейотического деления, и может касаться как яйцеклеток, так и сперматозоидов.
  • сбои, возникающие при оплодотворении: : случаи оплодотворения яйцеклетки двумя сперматозоидами (диспермия), в результате чего возникает триплоидный зародыш.
  • сбои, возникающие во время первых митотических делений : полная тетраплоидия возникает в случае, когда первое деление привело к удвоению хромосом, но неразделению цитоплазмы. Мозаики возникают в случае подобных сбоев на этапе последующих делений.

Моносомии

Моносомия X (45,X) представляет одну из часто встречающихся аномалий в материале самопроизвольных выкидышей. При рождении она соответствует синдрому Шерешевского-Тернера, и при рождении она встречается реже, чем другие количественные аномалии половых хромосом. Эта бросающаяся в глаза разница между относительно высокой частотой обнаружения лишних X-хромосом у новорожденных и относительно редким обнаружением моносомии X у новорожденных указывает на высокую частоту летальности моносомии X у зародыша. Кроме того, обращает на себя внимание очень большая частота мозаик у больных с синдромом Шерешевского-Тернера. В материале выкидышей, наоборот, мозаики с моносомией X крайне редки. Данные исследований показали, что только менее 1% всех моносомий X доходит до срока родов. Моносомии аутосом в материале выкидышей встречаются довольно редко. Это очень контрастирует с высокой частотой соответствующих трисомий.

Трисомии

В материале выкидышей трисомии представляют более половины всех количественных хромосомных аберраций. Обращает на себя внимание то, что в случаях моносомий недостающей хромосомой обычно оказывается X-хромосома, а в случаях избыточных хромосом, дополнительная хромосома чаще всего оказывается аутосомой.

Точная идентификация дополнительной хромосомы стала возможна благодаря методу G-бэндинга. Исследования показали, что все аутосомы могут принимать участие в нон-дисджанкшн (см. таблицу). Обращает на себя внимание, что три хромосомы, чаще всего встречающиеся при трисомиях новорожденных (15-я, 18-я и 21-я) чаще всего обнаруживаются и при летальных трисомиях у зародышей. Вариации относительных частот различных трисомий у зародышей отражают во многом сроки, на которых происходит гибель зародышей, поскольку, чем более летальной является комбинация хромосом, тем на более ранних сроках происходит остановка развития, тем реже будет обнаруживаться такая аберрация в материалах выкидышей (чем меньше срок остановки развития, тем труднее обнаружить такой зародыш).

Лишняя хромосома при летальных трисомиях у зародыша (данные 7 исследований: Буэ (Франция), Карр (Канада), Кризи (Великобритания), Дилл (Канада), Кадзи (Швейцария), Такахара (Япония), Теркелсен (Дания))
Дополнительная аутосома Количество наблюдений
A 1
2 15
3 5
B 4 7
5
C 6 1
7 19
8 17
9 15
10 11
11 1
12 3
D 13 15
14 36
15 35
E 16 128
17 1
18 24
F 19 1
20 5
G 21 38
22 47

Триплоидии

Крайне редко наблюдаемые при мертворождениях, триплоидии составляют пятую по частоте хромосомную аномалию в материале выкидыше. В зависимости от соотношения половых хромосом может быть 3 варианта триплоидий: 69XYY (самая редкая), 69, XXX и 69, XXY (самая частая). Анализ полового хроматина показывает, что при конфигурации 69, XXX чаще всего обнаруживается только одна глыбка хроматина, а при конфигурации 69, XXY чаще всего половой хроматин не обнаруживается.

Приведенный ниже рисунок иллюстрирует различные механизмы, приводящие к развитию триплоидии (диандрию, дигинию, диспермию). С помощью специальных методов (хромосомные маркеры, антигены тканевой совместимости) удалось установить относительную роль каждого из этих механизмов в развитии триплоидии у зародыша. Оказалось, что на 50 случаев наблюдений триплоидия была следствием дигинии в 11 случаях (22%), диандрии либо диспермии — в 20 случаях (40%), диспермии — в 18 случаях (36%).

Тетраплоидии

Тетраплоидии встречаются примерно в 5% случаев количественных хромосомных аберраций. Чаще всего встречаются тетраплоидии 92, XXXX. Такие клетки всегда содержат 2 глыбки полового хроматина. В клетках с тетраплоидией 92, XXYY никогда не бывает видно полового хроматина, но в них обнаруживают 2 флуоресцирующие Y-хромосомы.

Двойные аберрации

Большая частота хромосомных аномалий в материале выкидышей объясняет высокую частоту комбинированных аномалий в одном и том же зародыше. Напротив, у новорожденных комбинированные аномалии крайне редки. Обычно в таких случаях наблюдаются комбинации аномалии половой хромосомы и аномалии аутосомы.

В связи с более высокой частотой аутосомных трисомий в материале выкидышей, при комбинированных хромосомных аномалиях у абортусов чаще всего встречаются двойные аутосомные трисомии. Трудно сказать, связаны ли такие трисомии с двойным "нон-дисджанкшн" в одной и той же гамете, или со встречей двух аномальных гамет.

Частота сочетаний различных трисомий в одной и той же зиготе носит случайный характер, что позволяет предположить независимость друг от друга появления двойных трисомий.

Комбинация двух механизмов, приводящих к появлению двойных аномалий, позволяет объяснить появление других аномалий кариотипа, встречающихся при выкидышах. "Нон-дисджанкшн" при образовании одной из гамет в сочетании с механизмами образования полиплоидии объясняет появление зигот с 68 или 70 хромосомами. Сбой первого митотического деления у такой зиготы с трисомией может приводить к таким кариотипам, как 94,XXXX,16+,16+.

Структурные хромосомные аномалии

Согласно классическим исследованиям, частота структурных хромосомных аберраций в материале выкидышей составляет 4—5%. Однако многие исследования были сделаны до широкого использования метода G-бэндинга. Современные исследования указывают на более высокую частоту структурных хромосомных аномалий у абортусов. Обнаруживаются самые разные виды структурных аномалий. Примерно в половине случаев эти аномалии являются унаследованными от родителей, примерно в половине случаев они возникают de novo .

Влияние хромосомных аномалий на развитие зиготы

Хромосомные аномалии зиготы проявляются как правило уже в первые недели развития. Выяснение конкретных проявлений каждой аномалии сопряжено с целым рядом трудностей.

Во многих случаях установление срока беременности при анализе материала выкидышей крайне затруднено. Обычно сроком зачатия считается 14-й день цикла, но у женщин с невынашиванием беременности часто бывают задержки цикла. Кроме того, очень трудно бывает установить дату "смерти" плодного яйца, поскольку от момента гибели до выкидыша может пройти много времени. В случыае триплоидии этот период может составить 10—15 недель. Применение гормональных препаратов может еще более удлиннить это время.

С учетом этих оговорок, можно сказать, что чем меньше срок беременности на момент гибели плодного яйца, тем выше частота хромосомных аберраций. Согласно исследованиям Кризи и Лоритсена, при выкидышах до 15 недель беременности частота хромосомных аберраций составляет около 50%, при сроке 18 — 21 неделя — около 15%, при сроке более 21 недели — около 5—8%, что примерно соответствует частоте хромосомных аберраций в исследованиях перинатальной смертности.

Фенотипические проявления некоторых летальных хромосомных аберраций

Моносомии X обычно останавливаются в развитии к 6 неделям после зачатия. В двух третях случаев плодный пузырь размером 5—8 см не содержит зародыша, но существует шнурообразное образование с элементами эмбриональной ткани, остатками желточного мешка, плацента содержит субамниотические тромбы. В одной трети случаев плацента имеет такие же изменения, но обнаруживается морфологически неизмененный зародыш, погибший в возрасте 40—45 дней после зачатия.

При тетраплоидиях развитие останавливается к сроку 2-3 недели после зачатия, морфологически эта аномалия характеризуется "пустым плодным мешком".

При трисомиях наблюдаются различные типы аномалий развития, в зависимости от того, какая хромосома является лишней. Однако в подавляющем большинстве случаев развитие останавливается на очень ранних сроках, элементов зародыша не обнаруживается. Это классический случай "пустого плодного яйца" (анэмбрионии).

Трисомия 16, очень частая аномалия, характеризуется наличием маленького плодного яйца диаметром около 2,5 см, в полости хориона находится небольшой амниотический пузырек около 5 мм в диаметре и эмбриональный зачаток размером 1—2 мм. Чаще всего развитие останавливается на стадии эмбрионального диска.

При некоторых трисомиях, например, при трисомиях 13 и 14, возможно развитие зародыша до срока около 6 недель. Зародыши характеризуются циклоцефалической формой головы с дефектами закрытия верхнечелюстных холмиков. Плаценты гипопластичны.

Зародыши с трисомиями 21 (синдром Дауна у новорожденных) не всегда имеют аномалии развития, а если и имеют, то незначительные, не могущие служить причиной их гибели. Плаценты в таких случаев бывают бедны клетками, и представляются остановившимися в развитии на ранней стадии. Гибель зародыша в таких случаях представляется следствием плацентарной недостаточности.

Заносы. Сравнительный анализ цитогенетических и морфологических данных позволяет выделить два типа заносов: классический пузырный занос и эмбриональный триплоидный занос.

Выкидыши при триплоидиях имеют четкую морфологическую картину. Это выражается в сочетании полной или (чаще) частичной пузырной дегенерации плаценты и амниотического пузырька с зародышем, размеры которого (зародыша) очень малы по сравнению с относительно большим амниотическим пузырьком. Гистологическое исследование показывает не гипертрофию, а гипотрофию пузырно измененного трофобласта, образующего микрокисты в результате многочисленный инвагинаций.

Напротив, классический пузырный занос не затрагивает ни амниотический мешок, ни зародыш. В пузырьках обнаруживается избыточное образование синцитиотрофобласта с выраженной васкуляризацией. Цитогенетически большинство классических пузырных заносов имеет кариотип 46,XX. Проведенные исследования позволили установить хромосомные сбои, участвующие в образовании пузырного заноса. Было показано, что 2 X-хромосомы в классическом пузырном заносе идентичны и имеют отцовское происхождение. Наиболее вероятным механизмом развития пузырного заноса является истинный андрогенез, возникающий вследствие оплодотворения яйцеклетки диплоидным сперматозоидом, возникшим в результате сбоя второго мейотического деления и последующим полным выключением хромосомного материала яйцеклетки. С точки зрения патогенеза, такие хромосомные нарушения близки к нарушениям при триплоидии.

Оценка частоты хромосомных нарушений в момент зачатия

Можно попробовать расчитать количество зигот с хромосомными аномалиями при зачатии, основываясь на частоте хромосомных аномалий, обнаруживаемых в материале выкидышей. Однако прежде всего следует отметить, что поразительное сходство результатов исследований материала выкидышей, проведенное в разных частях света, говорит о том, что хромосомные сбои в момент зачатия являются очень характерным явлением в репродукции у человека. Кроме того, можно констатировать, что реже всего встречающиеся аномалии (например, трисомии A, B и F) связаны с остановкой развития на очень ранних стадиях.

Анализ относительной частоты различных аномалий, возникающих при нерасхождении хромосом в процессе мейоза, позволяет сделать следующие важные выводы:

1. Единственной моносомией, обнаруживаемой в материале выкидышей, является моносомия X (15% всех аберраций). Напротив, аутосомные моносомии практически не обнаруживаются в материале выкидышей, хотя теоретически их должно быть столько же, сколько и аутосомных трисомий.

2. В группе аутосомных трисомий частота трисомий разных хромосом значительно варьирует. Исследования, выполненные с использованием метода G-бэндинга, позволили установить, что все хромосомы могут быть участницами трисомии, однако некоторые трисомии встречаются гораздо чаще, например, трисомия 16 встречается в 15% случаев всех трисомий.

Из этих наблюдений можно сделать вывод, что, скорее всего, частота нерасхождения разных хромосом приблизительно одинакова, а различная частота аномалий в материале выкидышей связана с тем, что отдельные хромосомные аберрации приводят к остановке развития на очень ранних стадиях и поэтому с трудом поддаются обнаружению.

Эти соображения позволяют приблизительно расчитать реальную частоту хромосомных нарушений в момент зачатия. Расчеты, сделанные Буэ, показали, что каждое второе зачатие дает зиготу с хромосомными аберрациями .

Данные цифры отражают среднюю частоту хромосомных аберраций при зачатии в популяции. Однако данные цифры могут значительно колебаться у разных супружеских пар. У некоторых супружеских пар вероятность возникновения хромосомных аберраций в момент зачатия значительно превышает средний риск в популяции. У таких супружеских пар невынашивание беременности на малых сроках происходит гораздо чаще, чем у остальных супружеских пар.

Данные расчеты подтверждаются другими исследованиями, проведенными с использованием других методов:

1. Классическими исследованиями Хертига
2. Определением уровня хорионического гормона (ХГ) в крови женщин после 10 после зачатия. Часто этот тест оказывается положительным, хотя менструация приходит вовремя или с небольшой задержкой, и субъективно наступления беременности женщина не замечает ("биохимическая беременность")
3. Хромосомный анализ материала, полученного при искусственных абортах показал, что при абортах на сроке 6—9 недель (4—7 недель после зачатия) частота хромосомных аберраций составляет примерно 8%, а при искусственных абортах на сроке 5 недель (3 недели после зачатия) эта частота возрастает до 25%.
4. Было показано, что нерасхождение хромосом в процессе сперматогенеза является очень частым явлением. Так Пирсон и сотр. обнаружили, что вероятность нерасхождения в процессе сперматогенеза для 1-й хромосомы составляет 3,5%, для 9-й хромосомы — 5%, для Y-хромосомы — 2%. Если и другие хромосомы имеют вероятность нерасхождения примерно такого же порядка, то тогда только 40% всех сперматозоидов имеют нормальный хромосомный набор.

Экспериментальные модели и сравнительная патология

Частота остановки развития

Хотя различия в типе плацентации и количестве плодов затрудняют сравнение риска неразвивающейся беременности у домашних животных и у человека, определенные аналогии проследить можно. У домашних животных процент летальных зачатий колеблется между 20 и 60%.

Изучение летальных мутаций у приматов дало цифры, сравнимые с таковыми у человека. Из 23 бластоцист, выделенных у макак до зачатия, у 10 были грубые морфологические аномалии.

Частота хромосомных аномалий

Только экспериментальные исследования позволяют провести хромосомный анализ зигот на разных стадиях развития и оценить частоту хромосомных аберраций. Классические исследования Форда выявили хромосомные аберрации у 2% зародышей мышей в возрасте от 8 до 11 дней после зачатия. Дальнейшие исследования показали, что это слишком продвинутая стадия развития зародышей, и что частота хромосомных аберраций гораздо выше (см. ниже).

Влияние хромосомных аберраций на развитие

Большой вклад в дело выяснения масштаба проблемы внесли исследования Альфреда Гроппа из Любека и Чарльза Форда из Оксфорда, проводившиеся на так называемых "табачных мышах" (Mus poschiavinus ). Скрещивание подобных мышей с нормальными мышами дает большой спектр триплоидий и моносомий, позволяющих оценить влияние обоих типов аберраций на развитие.

Данные профессора Гроппа (1973 г.) приведены в таблице.

Распределение эуплоидных и анэуплоидных зародышей у гибридных мышей
Стадия развития День Кариотип Всего
Моносомии Эуплоидии Трисомии
До имплантации 4 55 74 45 174
После имплантации 7 3 81 44 128
9—15 3 239 94 336
19 56 2 58
Живые мыши 58 58

Эти исследования позволили подтвердить гипотезу о равной вероятности возникновения моносомий и трисомий при зачатии: аутосомные моносомии возникают с такой же частотой, как и трисомии, но зиготы с аутосомными моносомиями погибают еще до имплантации и не обнаруживаются в материале выкидышей.

При трисомиях гибель зародышей происходит на более поздних сдадиях, но ни один зародыш при аутосомных трисомиях у мышей не доживает до родов.

Исследования группы Гроппа позволили показать, что в зависимости от типа трисомии, зародыши погибают на разных сроках: с трисомиями 8, 11, 15, 17 — до 12 дня после зачатия, с трисомиями 19 — ближе к сроку родов.

Патогенез остановки развития при хромосомных аномалиях

Исследование материала выкидышей показывает, что во многих случаях хромосомных аберраций эмбриогенез резко нарушается, так что элементов эмбриона не обнаруживается вообще ("пустые плодные яйца", анэмбриония) (остановка развития до срока 2-3 недель после зачатия). В других случаях удается обнаружить элементы зародыша, часто неоформленные (остановка развития на сроке до 3-4 недель после зачатия). При наличии хромосомных аберраций эмбриогенез часто или вообще невозможен, или резко нарушается с самых ранних стадий развития. Проявления таких нарушений выражены в гораздо большей степени в случае аутосомных моносомий, когда развитие зиготы останавливается в первые дни после зачатия, но и в случае трисомий хромосом, имеющих ключевое значение для эмбриогенеза, развитие также прекращается в первые дни после зачатия. Так, например, трисомия 17 обнаруживается только у зигот, остановившихся в развитии на самых ранних стадиях. Кроме того, многие хромосомные аномалии связаны вообще с пониженной способностью к делению клеток, как показывает изучение культур таких клеток in vitro .

В других случаях развитие может продолжаться до 5—6—7 недель после зачатия, в редких случаях — дольше. Как показали исследования Филиппа, в таких случаях гибель плода объясняется не нарушением эмбрионального развития (обнаруживаемые дефекты сами по себе не могут быть причиной смерти зародыша), а нарушением формирования и функционирования плаценты (стадия развития плода опережает стадию формирования плаценты.

Исследования культур клеток плаценты при различных хромосомных аномалиях показали, что в большинстве случаев деление плацентарных клеток происходит гораздо медленнее, чем при нормальном кариотипе. Это во многом объясняет, почему новорожденные с хромосомными аномалиями обычно имеют низкую массу тела и сниженную массу плаценты.

Можно предположить, что многие нарушения развития при хромосомных аберрациях связаны именно с пониженной способностью клеток к делению. При этом возникает резкая диссинхронизация процессов развития зародыша, развития плаценты и индукции дифференциации и миграции клеток.

Недостаточное и запоздалое формирование плаценты может приводить к нарушению питания и к гипоксии зародыша, а также — к снижению гормональной продукции плаценты, что может быть дополнительной причиной развития выкидышей.

Исследования клеточных линий при трисомиях 13, 18 и 21 у новорожденных показало, что клетки делятся медленнее, чем при нормальном кариотипе, что проявляется в снижении плотности клеток в большинстве органов.

Загадкой является то, почему при единственной аутосомной трисомии, совместимой с жизнью (трисомия 21, синдром Дауна), в одних случаях происходит задержка развития зародыша на ранних стадиях и самопроизвольный выкидыш, а в других — ненарушенное развитие беременности и рождение жизнеспособного ребенка. Сравнение клеточных культур материала выкидышей и доношенных новорожденных при трисомии 21 показало, что различия в способности клеток к делению в первом и втором случаях резко различается, что возможно объясняет разную судьбу таких зигот.

Причины количественных хромосомных аберраций

Изучение причин хромосомных аберраций крайне затруднено, прежде всего из-за высокой частоты, можно сказать, всеобщности этого явления. Очень трудно корректно собрать контрольную группу беременных женщин, с большим трудом поддаются изучению нарушения сперматогенеза и оогенеза. Несмотря на это, некоторые этиологические факторы повышения риска хромосомных аберраций выяснить удалось.

Факторы, напрямую связанные с родителями

Влияние возраста матери на вероятность рождения ребенка с трисомией 21 наводит на мысль о возможном влиянии возраста матери на вероятность возникновения летальных хромосомных аберраций у зародыша. Приводимая ниже таблица показывает связь возраста матери с кариотипом материала выкидышей.

Средний возраст матери при хромосомных аберрациях абортусов
Кариотип Число наблюдений Средний возраст
Нормальный 509 27,5
Моносомия X 134 27,6
Триплоидии 167 27,4
Тетраплоидия 53 26,8
Аутосомные трисомии 448 31,3
Трисомии D 92 32,5
Трисомии E 157 29,6
Трисомии G 78 33,2

Как видно из таблицы, не было обнаружено связи между возрастом матери и самопроизвольными выкидышами, связанными с моносомией X, триплоидией или тетраплоидией. Повышение среднего возраста матери отмечено для аутосомных трисомий в целом, но по разным группам хромосом цифры были получены разные. Однако общее число наблюдений в группах недостаточно, чтобы уверенно судить о каких-либо закономерностях.

Возраст матери в большей степени связан с повышенным риском выкидышей с трисомиями акроцентрических хромосом группы D (13, 14, 15) и G (21, 22), что совпадает и со статистикой хромосомных аберраций при мертворождениях.

Для некоторых случаев трисомий (16, 21) было определено происхождение лишней хромосомы. Оказалось, что возраст матери связан с повышением риска трисомий только в случае материнского происхождения лишней хромосомы. Не было обнаружено связи возраста отца с повышением риска трисомий.

В свете исследований на животных высказываются предположения о возможной связи старения гамет и задержки оплодотворения на риск возникновения хромосомных аберраций. Под старением гамет понимают старение сперматозоидов в половых путях женщины, старение яйцеклетки либо в результате перезрелости внутри фолликула или в результате задержки выхода яйцеклетки из фолликула, либо в результате трубной перезрелости (запоздалого оплодотворения в трубе). Скорее всего, подобные законы действуют и у человека, но достоверных подтверждений этого пока не получено.

Факторы окружающей среды

Было показано, что вероятность хромосомных аберраций при зачатии повышается у женщин, подвергшихся действию ионизирующей радиации. Предполагается связь между риском хромосомных аберраций и действием других факторов, в частности — химических.

Заключение

1. Не каждую беременность удается сохранить на малых сроках. В большом проценте случаев выкидыши обусловлены хромосомными нарушениями у плода, и родить живого ребенка невозможно. Гормональное лечение может отсрочить момент выкидыша, но не может помочь зародышу выжить.

2. Повышенная нестабильность генома супругов является одним из причинных факторов бесплодия и невынашивания беременности. Выявить такие супружеские пары помогает цитогенетическое обследование с анализом на хромосомные аберрации. В некоторых случаях повышенной нестабильности генома специальная антимутагенная терапия может помочь повысить вероятность зачатия здорового ребенка. В других случаях рекомендуется донорская инсеминация или использование донорской яйцеклетки.

3. При невынашивании беременности, обусловленном хромосомными факторами, организм женщины может "запомнить" неблагоприятный иммунологический ответ на плодное яйцо (иммунологический импринтинг). В таких случаях возможно развитие реакции отторжения и на зародыши, зачатые после донорской инсеминации или с использованием донорской яйцеклетки. В таких случаях рекомендуется проведение специального иммунологического обследования.

Закономерности жизни

Жизнь как явление характеризуется метаболизмом, размножением, наследственностью, изменчивостью, ростом, развитием, смертью.

Метаболи́зм (от греч. μεταβολή, «превращение, изменение») или обмен веществ - полный процесс превращения химических веществ в организме, обеспечивающих его рост, развитие, деятельность и жизнь в целом. В живом организме постоянно расходуется энергия, причём не только во время физической и умственной работы, а даже при полном покое (сне). Обмен веществ представляет собой комплекс биохимических и энергетических процессов, обеспечивающих использование пищевых веществ для нужд организма и удовлетворения его потребностей в пластических и энергетических веществах.

Размножение - это увеличение количества особей вида посредством воспроизведения. Способность к размножению, или самовоспроизведению, является одним из обязательных и важнейших свойств живых организмов. Размножение поддерживает длительное существование вида, обеспечивает преемственность между родителями и их потомством в ряду многих поколений. Размножение бывает бесполое и половое.

Формы бесполого размножения:

1. Бинарное деление - митотическое деление, при котором образуются две равноценные дочерние клетки (Рис.3.1);

а - начало профазы; б - конец профазы; в - метафаза; г - анафаза; д - телофаза; е - завершение митоза. 1 - ядро; 2 - ядрышко; 3 - ядерная оболочка; 4 - неспирализованные хромосомы; 5 - пара центртриолей; 6 - нити веретена деления; 7 - родительские хромосомы разных типов; 8 - центромеры хромосом; 9 - дочерние хромосомы; 10 - поперечная мембранная перегородка между дочерними клетками.

Рис.3.1 Фазы митотического деления

2. Множественное деление, или шизогония . Материнская клетка распадается на большое количество более или менее одинаковых дочерних клеток (малярийный плазмодий) (Рис.3.2);

Рис.3.2 Шизогония

3. Споруляция . Размножение посредством спор - специализированных клеток грибов и растений (Рис.3.3). Если споры имеют жгутик и подвижны, то их называют зооспорами (хламидомонада). Если споры образуются с помощью митоза, то они имеют одинаковый генетический материал, если же они образуются с помощью мейоза, то они имеют генетический материал только одного организма, но генетически такие споры неравноценны;



Рис.3.3 Растения размножающиеся посредством спор

Рис.3.3а Споры грибов

4. Почкование . На материнской особи происходит образование выроста - почки, из которого развивается новая особь (дрожжи, гидра) (Рис.3.4);

Рис.3.4 Почкообразование у гидры

5. Фрагментация - разделение особи на две или несколько частей, каждая из которых развивается в новую особь (Рис.3.5). У растений (спирогира), и у животных (кольчатые черви). В основе фрагментации лежит свойство регенерации;

Рис.3.5 Водоросль спирогира произрастающая повсеместно в случае разрыва в любом месте достраиватся до нужных размеров и формы. Разорванные иглокожие (морские звезды) легко достраиваются до исходных размеров.

6. Вегетативное размножение . Характерно для многих групп растений. При вегетативном размножении новая особь развивается либо из части материнской, либо из особых структур (луковица, клубень и т.д.), специально предназначенных для вегетативного размножения (Рис.3.6);

Рис.3.6 Размножение клубники

7. Клонирование. Искусственный способ бесполого размножения.. Клон - генетически идентичное потомство, полученное от одной особи в результате того или иного способа бесполого размножения. Реализован в практике, путем введения в клетку искусственного ядра. Техника введения показана на рисунке 3.7

Рис.3.7 Техника введения ядра в клетку

В естественных условиях клоны появляются редко. Общеизвестный пример естественного клонирования, существующего в природе и имеющего место у человека - однояйцевые близнецы, развившиеся из одной яйцеклетки (Это обязательно дети одного пола). До шестидесятых годов двадцатого века клоны получали искусственным путем исключительно при вегетативном размножении растительных организмов, чаще всего для сохранения сортовых признаков и при получении культур микроорганизмов, используемых в медицине. В начале шестидесятых годов были разработаны методы, позволяющие успешно клонировать некоторые высшие растения и животных путем выращивания из отдельных клеток. Эти методы возникли в результате попыток доказать, что ядра зрелых клеток, закончивших свое развитие, содержат всю информацию, необходимую для кодирования всех признаков организма, и что специализация клеток обусловлена включением и выключением определенных генов, а не утратой некоторых из них. Первый успех был достигнут профессором Стюардом из Корнельского университета, который показал, что, выращивая отдельные клетки корня моркови (ее съедобной части) в среде, содержащей нужные питательные вещества и гормоны, можно индуцировать процессы клеточного деления, приводящие к образованию новых растений моркови. Вскоре после этого Гёрдон, работавший в Оксфордском университете, впервые сумел добиться клонирования позвоночного животного. Позвоночные в естественных условиях клонов не образуют; однако, пересаживая ядро, взятое из клетки кишечника лягушки, в яйцеклетку, собственное ядро которой предварительно было разрушено путем облучения ультрафиолетом, Гёрдону удалось вырастить головастика, а затем и лягушку, идентичную той особи, от которой было взято ядро.

С семидесятых годов ученые предпринимали попытки клонирования млекопитающих. Крохотная овечка Долли - символ очередного этапа успешного развития биотехнологии. Такого рода эксперименты не только доказывают, что дифференцированные (специализированные) клетки содержат всю информацию, необходимую для развития целого организма, но и позволяют рассчитывать, что подобные методы можно будет использовать для клонирования позвоночных, стоящих на более высоких ступенях развития, в том числе и человека. Техника клонирования сулит, в первую очередь, большие перспективы для животноводства, так как дает возможность получать от любого животного, обладающего ценными качествами, многочисленные генетически идентичные копии с теми же признаками. Клонирование нужных животных, например племенных быков, скаковых лошадей и т.п., может оказаться столь же выгодным, как и клонирование растений, которое, как было сказано, уже производится. Также одна из возможных областей применения данной технологии клонирование редких и исчезающих видов диких животных. Фактически появились реальные технические возможности для клонирования человека.

Наследственность. Уже более ста лет назад стало известно, что каждый новый организм возникает в результате соединения мужской и женской половых клеток - яйцеклетки и сперматозоида.

Работы немецкого биолога Ф. Шнейдера наводили на мысль, что из элементов ядра клетки наиболее вероятными непосредственными носителями наследственности являются «цветные тельца» - хромосомы . Свое название они получили после того как для их наблюдения под микроскопом их окрашивали красителями для лучшего рассмотрения.

Голландец Э. ван Бенедан заметил, что в половых клетках хромосом в два раза меньше (Рис.3.8), и только после слияния разнополых клеток образуется нормальный хромосомный набор.

Рис.3.8 Хромосомы человека в черно-белом варианте

Рис.3.8а Хромосомы человека в цветном варианте

Рис.3.8б Строение хросмосомы

Хромосомная теория наследственности (морганизм) трансформировалась в молекулярную генетику, в учение о гене, как участке ДНК.

На рисунке показан процесс "упаковки" ДНК в сложно-скрученные структуры. Причины "укладки" очевидны - ДНК слишком длинная молекула (длина цепи ДНК одной хромосомы - около 10 сантиметров), поэтому её надо упаковать. А чтобы она не слипалась между собой, с ней связываются определённые белки. Комплекс белков с ДНК называется хроматином. Для удобства всегда ставят знак тождества между ДНК и хроматином, поскольку "голой" ДНК в природе не встречается. ДНК содержит гены и некодируемые участки. В процессе расхождения удвоившихся хромосом в центромерах происходит разборка полимера приводящая к расхождению хромосом с образованием 2 дочерних клеток. Репликация ДНК происходит под действием ферментов и приводит к образованию второй точной копии молекулы ДНК в удвоенной хромосоме (Рис.3.9).

Рис.3.9 Схема репликации молекулы ДНК: дочерняя цепь (реплика) строится на каждой из родительских полинуклеотидных цепей, как на матрице. Стрелкой указано направление движения так называемой вилки репликации, пунктиром обозначены водородные связи между азотистыми основаниями. А - аденин, Т - тимин, Г - гуанин, Ц - цитозин.

Хромосомная теория наследственности объясняет не только процесс эволюции и передачу признаков родителей детям, но и показывает генетическую связь всего живого, в том числе родственную связь людей и обезьян. В процессе изучения хромосомной теории наследственности были выявлены хромосомно-наследственные заболевания, вызываемые нерасхождением хромосом в процессе митоза клетки. Такие хромосомные образования называются трисомией и по определению излечение данных заболеваний невозможно.

Синдром Патау (трисомия по хромосоме 13). Впервые опи­сано в 1960 году. Популяционная частота 1 на 7800.

Для синдрома Патау характерны следующие диагностические при­знаки: расщелина верхней губы и неба, низко поса­женные деформированные ушные раковины, флексорное положение пальцев рук, выпуклые ногти, попе­речная ладонная складка, стопа-качалка. Из пороков внутренних ор­ганов отмечены врожденные пороки сердца (дефекты перегородок и крупных сосудов), незавершенный поворот кишечника и др. Глубокая идиотия. Дети, в основном, умирают в воз­расте до 1 года, чаще в первые 2-3 месяца жизни.

Синдром Эдвардса (трисомия по хромосоме 18) (Рис.3.10). Описан в 1960 году. Популяционная частота составляет 1 на 6500. Дети с синдромом Эдвардса имеют малую массу тела при рожде­нии. Основными диагностическими признакамисиндрома являются: низко посаженные аномальной фор­мы уши, скошенный подбородок. Имеют­ся аномалии развития конечностей: верхних - сгибательные дефор­мации пальцев, перекрывание пальцев, сжатые пальцы рук, широкий палец стопы, типичная форма стопы в виде качалки. Из внутренних пороков следует отметить комбинирован­ные пороки сердечно-сосудистой системы, незавершенный поворот кишечника пороки развития почек чаще гидронефроз и подковооб­разная почка), крипторхизм. Дети погибают, в основном, в возрасте до 1 года от осложнений, вызванных врожденными порока­ми развития.

Рис.3.10 Синдром Эдвардса

Синдром Дауна (трисомия хромосомы 21) (Рис.3.11). Впервые описан в 1866 году английским врачом Дауном. Наиболее часто встречаю­щийся хромосомный синдром - популяционная частота составляет 1 случай на 600-700 новорожденных детей. Частота рождения детей с данным синдромом зависит от возраста матери и резко увеличива­ется после 35 лет. Цитогенетические варианты очень разнообразны, но около 95% случаев представлены простой трисомией 21 хромо­сомы. Несмотря на интенсив­ное изучение синдрома причины нерасхождения хромосом до насто­ящего времени не ясны.

Основными диагностическими признаками синдрома являются: типичное плоское лицо, монголоидный разрез глаз, откры­тый рот, аномалии зубов, короткий нос и плоская пе­реносица, избыток кожи на шее, короткие конечности, поперечная четырех-пальцевая ладонная складка (обезьянья борозда). Из по­роков внутренних органов часто отмечаются врожденные пороки сер­дца и желудочно-кишечного тракта, которые и определяют продолжительность жизни больных. Умственная отсталость обычно сред­ней степени тяжести. Дети с синдромом Дауна часто ласковые и при­вязчивые, послушные и внимательные.

Рис. 3.11 Синдром Дауна

Исследования строения хромосом позволили выявить отдельные участки - гены, отвечающие за наследование некоторых признаков и наличия некоторых заболеваний. Для человеческой хромосомы Х это (Рис.3.12):

Рис.3.12 Хромосома Х и гены отвечающие за те или иные заболевания

Хромосома 7 (человека)

Рис.3.12а Хромосома 7

Хромосома 7 (Рис.3.12а) - одна их хромосом человека, обычно содержащаяся в ядре клетки в двух экземплярах. Она содержит более 158 миллионов пар оснований, что составляет от 5% до 5.5% всего материала ДНК в клетке тела человека. По разным оценкам, хромосома 7 содержит от 1000 до 1400 генов. Эти данные носят только ориентировочный характер. Точные оценки будут сделаны по мере более глубокого их изучения.

В 2000 - ом году ученым удалось полностью расшифровать последовательность нуклеотидов, составляющих более чем 80 тысяч генов человека. При его расшифровке, помимо собственно нуклеотидной последовательности, получены данные о цитогенетических и физических картах хромосом, их нуклеотидных последовательностях, локализации генов, устойчивых полиморфизмах, то есть мутациях, присутствующих в локальных популяциях человека с частотами не менее 3-5%. К настоящему времени выявлено не менее 1.5 миллиона мутационных полиморфизмов, по которым геномы людей отличаются друг от друга. К настоящему времени расшифрованы аминокислотные последовательности миллионов белков и с использованием методов рентгеноструктурного анализа и ядерного магнитного резонанса определены пространственные структуры более 15 тысяч белков. В ближайшие годы это достижение позволит справиться с десятками болезней, против которых современная медицина бессильна. Будет найдено средство от рака, заболеваний сердечно-сосудистой системы, многих наследственных нарушений и пороков развития, будет замедлено старение организма. Расшифровка генома - плод совместных усилий международного проекта Геном человека", финансируемого как британским фондом Wellcome Trust, так и американскими Национальными институтами здравоохранения, и частной компании Celera Genomics. Перед учеными встанет задача обобщения данных, установление взаимосвязей между различными генами, изучение механизмов развития болезней на генном уровне. Вскоре каждый человек сможет получить личную копию своего генетического кода для медицинских целей или просто из любопытства. Британская компания Solexa заявила о завершении разработки нового метода расшифровки генов, который позволит прочитать геном человека за один день. Кроме того, американский ученый Крейг Вентер, который принимал участие в расшифровке первого образца человеческого генома, сообщил, что уже получил заказы от частных лиц, желающих иметь на руках собственную генную карту. Человеческий геном представляет собой "строку" из трех миллиардов фрагментов ДНК. Такая информация позволит человеку узнать, например, о существовании генов, которые указывают на повышенный риск таких заболеваний, как болезнь Альцгеймера. Компания Solexa сообщила о создании более быстрого и дешевого метода расшифровки цепочек ДНК. Впервые он был использован для анализа единичных нуклеотидных полиморфизмов (SNP) - фрагментов кода ДНК, отличающиеся у разных людей. Эти незначительные различия могут объяснить, почему некоторые люди предрасположены к таким болезням, как рак или диабет, а другие - нет. Цель компании Solexa - разработать технологию, при которой полный геном человека может быть получен за 24 часа при стоимости процесса не более 1 тыс. долларов. Такая услуга может стать частью анализа крови, проводимого в обычной поликлинике. По словам представителей компании, при правильном использовании генетическая информация способна оказать помощь в улучшении здоровья отдельного человека, но в тоже время необходимо обеспечить конфиденциальность таких данных.

Изменчивость - это возникновение индивидуальных различий. На основе изменчивости организмов появляется генетическое разнообразие форм, которые в результате действия естественного отбора преобразуются в новые подвиды и виды. Различают изменчивость ненаследственную - модификационную или фенотипическую, и наследственную мутационную или генотипическую, а также комбинативную и соотносительную. Данные о типах изменчивости приведены в таблице 3.1.

ТАБЛИЦА 3.1Сравнительная характеристика форм изменчивости

Формы изменчивости Причины появления Значение Примеры
Ненаследственная модификационная (фенотипическая) Изменение условий среды, в результате чего организм изменяется в пределах нормы реакции, заданной генотипом Адаптация - приспособление к данным условиям среды, выживание, сохранение потомства Белокочанная капуста в условиях жаркого климата не образует кочана. Породы лошадей и коров, завезенных в горы, становятся низкорослыми
Наследственная (генотипическая) Мутационная Влияние внешних и внутренних мутагенных факторов, в результате чего происходит изменение в генах и хромосомах Материал для естественного и искусственного отбора, так как мутации могут быть полезные, вредные и безразличные, доминантные и рецессивные Появление полиплоидных форм в популяции растений или у некоторых животных (насекомых, рыб) приводит к их репродуктивной изоляции и образованию новых видов, родов -- микроэволюции
Комбинативная Возникает стихийно в рамках популяции при скрещивании, когда у потомков появляются новые комбинации генов Распространение в популяции новых наследственных изменений, которые служат материалом для отбора Появление розовых цветков при скрещивании белоцветковой и красноцветковой примул. При скрещивании белого и серого кроликов может появиться черное потомство
Соотноси-тельная (коррелятивная) Возникает в результате свойства генов влиять на формирование не одного, а двух и более признаков Постоянство взаимосвязанных признаков, целостность организма как системы Длинноногие животные имеют длинную шею. У столовых сортов свеклы согласованно изменяется окраска корнеплода, черешков и жилок листа

Онтогенез - индивидуальное развитие организма , совокупность последовательных морфологических, физиологических и биохимических преобразований, претерпеваемых организмом от момента его зарождения до конца жизни. Онтогенез включает рост, т. е. увеличение массы тела, его размеров, дифференцировку. Термин введён Э. Геккелем. В ходе онтогенеза каждый организм закономерно проходит последовательные фазы, стадии или периоды развития, из которых основными у организмов, размножающихся половым путём, являются: зародышевый (эмбриональный), послезародышевый (постэмбриональный) и период развития взрослого организма. В основе онтогенеза лежит сложный процесс реализации на разных стадиях развития организма наследственной информации, заложенной в каждой из его клеток. Обусловленная наследственностью программа онтогенеза осуществляется под влиянием многих факторов (условия внешней среды, межклеточные и межтканевые взаимодействия, гуморально-гормональные и нервные регуляции и т.д.) и выражается во взаимосвязанных процессах размножения клеток, их роста и дифференцировки.

Одной из главных особенностей всех организмов является способность к росту . Было бы неверным представлять рост просто как увеличение в размерах. Так, размеры растительной клетки могут увеличиться при поглощении воды, но этот процесс не будет истинным ростом, так как он обратим. Обычно ростом называется увеличение размеров организма (либо отдельных органов) за счёт процессов биосинтеза. В некоторых случаях рост может быть отрицательным (например, уменьшение сухой массы семени при образовании ростка).

Рост многоклеточного организма можно разделить на два процесса:

Деление клеток в результате митоза;

Рост клеток – необратимое увеличение в размерах за счёт поглощения воды или синтеза протоплазмы.

У однолетних растений, некоторых насекомых, птиц и млекопитающих рост ограничен. После наступления максимальной интенсивности роста, когда организм достигает зрелости и размножается, рост замедляется, а потом и вовсе приостанавливается, после чего организм стареет и гибнет. У многолетних растений (особенно у деревьев), многих беспозвоночных, рыб и пресмыкающихся рост неограниченный; какая-то небольшая положительная скорость роста наблюдается до самой гибели. Необычным типом роста характеризуются многие членистоногие. Их наружный скелет не может увеличиваться в размерах, и этим животным приходится его сбрасывать. В тот короткий период, пока новый скелет не затвердеет, и происходит увеличение размеров тела.

Смерть (гибель ) - необратимое прекращение, остановка жизнедеятельности организма. Для одноклеточных живых форм завершением периода существования отдельного организма может являться как смерть, так и митотическое деление клетки. Наступлению смерти всегда предшествуют терминальные состояния - преагональное состояние, агония и клиническая смерть, - которые в совокупности могут продолжаться различное время, от нескольких минут до часов и даже суток. Вне зависимости от темпа наступления смерти ей всегда предшествует состояние клинической смерти. Клиническая смерть продолжается с момента прекращения сердечной деятельности, дыхания и функционирования ЦНС и до момента, пока в мозгу не разовьются необратимые патологические изменения. В состоянии клинической смерти анаэробный обмен веществ в тканях продолжается за счёт накопленных в клетках запасов. Как только эти запасы в нервной ткани заканчиваются, она умирает. При полном отсутствии кислорода в тканях омертвение клеток коры головного мозга и мозжечка (наиболее чувствительных к кислородному голоданию отделов мозга) начинается через 2-2,5 минуты. После смерти коры восстановление жизненных функций организма становится невозможным, то есть клиническая смерть переходит в биологическую.

Геном человека [Энциклопедия, написанная четырьмя буквами] Тарантул Вячеслав Залманович

Хромосома 7

Хромосома 7

Плотность снипсов наибольшая в прицентромерной области длинного плеча этой хромосомы. А вот гены расположены довольно равномерно вдоль хромосомы, за исключением одного участка в середине длинного плеча, где содержится наибольшее их количество. Среди заболеваний, ассоциированных с генами хромосомы 7, можно отметить такие, как хронический грануломатоз, рак прямой кишки, кистозный фиброз, аутосомно-доминантная глухота, вялая кожа, эритремия, гемолитическая анемия, карликовость, фамильный гиперинсулинизм, врожденная миотония, остеопороз, панкреатит, трипсиногеновая недостаточность, болезнь коронарной артерии и др.

Из книги Геном человека: Энциклопедия, написанная четырьмя буквами автора Тарантул Вячеслав Залманович

Хромосома 2 Это вторая по размерам хромосома. Наибольшая плотность снипсов имеется в районе центромеры, а вот повторы здесь практически отсутствуют. На единицу длины в ней содержится заметно меньше генов, чем в хромосоме 1 и ряде других хромосом. Тем не менее, число

Из книги автора

Хромосома 3 Это еще одна довольно большая хромосома. В отличие от хромосомы 2 у нее в области центромеры содержится мало как снипсов, так и повторов. Наибольшее количество снипсов расположено ближе к концам этой хромосомы, а наибольшее число генов - на коротком плече.

Из книги автора

Хромосома 4 Гены, повторы и снипсы распределены в хромосоме 4 довольно равномерно (за исключением района центромеры, где все они представлены малым количеством). Подсчитано, что общее число генов здесь меньше, чем в среднем на единицу длины генома. Среди заболеваний,

Из книги автора

Хромосома 5 Большинство генов этой хромосомы сконцентрировано в двух областях длинного плеча и одном районе короткого ближе к его концу. Имеются два района, расположенных вокруг центромеры, обогащенные снипсами. C генами хромосомы 5 связан ряд тяжелых заболеваний:

Из книги автора

Хромосома 6 Плотность и генов и снипсов наибольшая в нескольких районах на коротком плече этой хромосомы, а вот повторы распределены вдоль хромосомы довольно равномерно (их мало только в области центромеры). C генами хромосомы 6 связан ряд патологий человека: диабет,

Из книги автора

Хромосома 7 Плотность снипсов наибольшая в прицентромерной области длинного плеча этой хромосомы. А вот гены расположены довольно равномерно вдоль хромосомы, за исключением одного участка в середине длинного плеча, где содержится наибольшее их количество. Среди

Из книги автора

Хромосома 8 Большинство снипсов в этой хромосоме сконцентрировано на конце короткого плеча, а на конце длинного плеча имеется область, сильно обогащенная генами. Число генов, ассоциированных с заболеваниями, в хромосоме 8 относительно небольшое. Среди них имеются гены,

Из книги автора

Хромосома 9 Здесь и снипсы, и повторы, и гены распределены очень неравномерно вдоль хромосомы. Кроме того, хромосома 9 обогащена снипсами по сравнению с другими хромосомами (при расчете их числа на единицу длины). При этом наибольшее их число сконцентрировано в

Из книги автора

Хромосома 10 Эта хромосома является средней по числу содержащихся в ней генов, повторяющихся участков и снипсов на единицу длины, но распределение их по хромосоме далеко не равномерное: несколько участков на длинном плече сильно обогащены генами и снипсами. Среди

Из книги автора

Хромосома 11 На конце короткого плеча и в прицентромерном районе длинного плеча этой хромосомы имеет место концентрация генов. Содержание снипсов повышено лишь в районе конца короткого плеча, а вдоль хромосомы оно относительно одинаковое. От общего числа генов этой

Из книги автора

Хромосома 12 Эта хромосома является средней по большинству параметров. Гены распределены в ней весьма неравномерно. С ними ассоциирован ряд заболеваний: адренолейкодистрофия, амилоидозис, злокачественная неходжкинская лимфома, рак прямой кишки, эмфизема, энурез,

Из книги автора

Хромосома 13 Короткое плечо этой хромосомы пока плохо секвенировано. Имеется концентрация снипсов в районе центромеры на длинном плече. Хромосома 13 относительно других хромосом обеднена генами (на 1 млн. букв в ней в среднем приходится всего около 5 генов). Наибольшее их

Из книги автора

Хромосома 20 Хромосома 20 стала третьей по времени полностью секвенированной хромосомой человека. По размеру эта хромосома составляет всего около двух процентов генетического кода генома человека. Гены, повторы и снипсы распределены вдоль хромосомы весьма неравномерно.

Из книги автора

Хромосома 21 Эта хромосома является самой маленькой по размерам и информационной емкости (на ее долю приходится не более 1,5% от всего генома человека). Но секвенирована она была только вслед за хромосомой 22. Число генов в хромосоме 21 относительно невелико. При размере около

Из книги автора

Хромосома 22 ДНК этой хромосомы была секвенирована первой (декабрь 1999 г.), поэтому она и описана более полно. В хромосоме 22 остались нерасшифрованными всего несколько участков (менее 3% длины ДНК). Она содержит около 500 генов и 134 псевдогена. Все эти генные последовательности

Из книги автора

Хромосома X Это женская половая хромосома. Наличие двух хромосом X определяет женский пол. Пара для хромосомы X у мужчин - омертвевшая и короткая Y-хромосома. У женщин в одной из 2 хромосом X происходит инактивация всех тех генов, которые не имеют пары на хромосоме Y. В ходе

Особую группу заболеваний, связанных со структурными изменениями в генетическом материале» составляют хромосомные болезни, условно относящиеся к категории наследственных. Дело в том, что в подавляющем большинстве случаев хромосомные болезни не передаются потомству, поскольку их носители чаще всего бывают бесплодными.

Хромосомные болезни обусловлены геномнымиили хромосомными мутациями, произошедшими в гамете одного из родителей, или в зиготе, сформированной гаметами с нормальным набором хромосом. В первом случае все клетки будущего ребенка будут содержать аномальный хромосомный набор (полная форма хромосомной болезни), во втором – развивается мозаичный организм, лишь часть клеток которого с аномальным набором хромосом (мозаичная форма болезни). Степень выраженности патологических признаков при мозаичной форме болезни слабее, нежели при полной.

Фенотипическую основу хромосомных болезней составляют нарушения раннего эмбриогенеза, вследствие чего болезнь всегда характеризуется множественными пороками развития.

Частота хромосомных нарушений достаточно высока: из каждой 1000 живорожденных младенцев 3-4 имеют хромосомные болезни, у мертворожденных детей они составляют 6%; дисбалансом хромосом обусловлено около 40% спонтанных абортов (Н.П.Бочков, 1984). Количество вариантов хромосомных болезней не столь велико, как можно было бы ожидать теоретически. Дисбаланс, затрагивающий все пары хромосом, вызывает настолько значительные нарушения в организме, что они, как правило, оказываются несовместимыми с жизнью уже на ранних или более поздних этапах эмбриогенеза. Так, моноплоидия не обнаружена ни у новорожденных, ни у абортусов. Описаны редкие случаи триплаидии и тетраплоидии у абортусов и у живорожденных, которые, однако, погибали в первые дни жизни. Чаще встречаются изменения числа или структуры отдельных хромосом. Недостаток генетического материала вызывает более значительные дефекты, чем избыток. Полные моносомии, например, по аутосомам практически не обнаружены. По-видимому такой дисбаланс вызывает летальный исход уже в гаметогенезе или на стадии зиготы и ранней бластулы.

Основа для развития хромосомных болезней, связанных с изменением числа хромосом формируется в гаметогенезе, во время первого или второго мейотических делений или в период дробления оплодотворенной яйцеклетки, чаще всего в результате нерасхождения хромосом. При этом одна из гамет вместо одинарного набора хромосом содержит крайне редко – диплоидный набор всех хромосом, или 2 хромосомы какой-либо из пар хромосом, вторая гамета не содержит ни одной такой хромосомы. При оплодотворении аномальной яйцеклетки сперматозоидом с нормальным набором хромосом или нормальной яйцеклетки аномальным сперматозоидом, реже при сочетании двух гамет, содержащих измененное число хромосом, создают предпосылки для развития хромосомной болезни.

Вероятность такого рода нарушений, а, следовательно, и рождения детей с хромосомными болезнями, нарастает с возрастом родителей, особенно матери. Так, частота нерасхождения 21-ой пары хромосом в 1-м мейотическом делении составляет 80% всех его случаев, из них в 66,2% – у матери и в 13,8% – у отца; суммарный риск иметь ребенка с трисомией по 13-ой, 18-ой, 21-ой хромосоме для женщины в возрасте 45 лет и старше в 60 раз выше риска для женщины 19-24 лет (Н.П. Бочков и др. 1984).

Самой частой хромосомной болезнью является болезнь Дауна. Кариотип больных в 94% состоит из 47 хромосом за счет трисомии по 21 хромосоме. Примерно в 4% случаев отмечается транслокация лишней 21-ой хромосомы в 14-ю или 22-ю, общее число хромосом равно 46. Болезнь характеризуется резкой задержкой и нарушением физического и психического развития ребенка. Такие дети низкорослы, поздно начинают ходить, говорить. Бросаются в глаза внешний вид ребенка (характерная форма головы со скошенным затылком, широкая, глубоко запавшая переносица, монголоидный разрез глаз, открытый рот, неправильный рост зубов, макроглоссия, мышечная гипотония с разболтанностью суставов, брахидактилия, особенно мизинца, поперечная складка на ладони и др.) и выраженная умственная отсталость, иногда до полной идиотии. Нарушения отмечаются во всех системах и органах. Особенно часты пороки развития нервной (в 67%), сердечно-сосудистой (64,7%) системы. Как правило, изменены реакции гуморального и клеточного иммунитета, страдает система репарации поврежденной ДНК. С этим связана повышенная восприимчивость к инфекции, более высокий процент развития злокачественных новообразований, в особенности лейкозов. В большинстве случаев больные бесплодны. Однако, встречаются случаи рождения больной женщиной детей, часть из них страдают той же болезнью.

Второй по частоте (1:5000-7000 родов) патологией обусловленной изменением числа аутосом, является синдром Патау (трисомия 13). Синдром характеризуется тяжелыми пороками головного мозга и лица (дефекты строения костей мозгового и лицевого черепа, головного мозга, глаз; микроцефалия, расщелина верхней губы и неба), полидактилией (чаще – гексодактилия), дефектами перегородок сердца, незавешенным поворотом кишечника, поликистозом почек, пороками развития других органов. 90% детей родившихся с этой патологией, погибают в течение 1-го года жизни.

Третье место (1:7000 рождений) среди полисемии аутосом занимает трисомия 18 (синдром Эдвардса). Основные клинические проявления болезни: многочисленные пороки костной системы (патология строения лицевой части черепа: микрогнатия, эпикант, птоз, гипертелоризм) сердечно-сосудистой (дефекты межжелудочковой перегородки, пороки клапанов легочной артерии, аорты), гипоплазия ногтей, подковообразная почка, крипторхизм у мальчиков. 90% больных погибает на первом году жизни.

Намного чаще встречаются хромосомные болезни, связанные с нерасхождением половых хромосом. Известные варианты гоносомных полисомий приведены в таблице.

Типы гоносомных полисомий, обнаруженных у новорожденных

(по Н.П.Бочкову, А.Ф. Захарову, В.И.Иванову, 1984)

Как следует из таблицы, подавляющее число полисимий по половым хромосомам приходится на трисомии XXX, XXV, XVV.

При трисомии по Х-хромосоме («сверхженщина») клинические признаки болезни нередко отсутствуют или минимальны. Болезнь диагносцируется по обнаружению вместо одного двух телец Барра и по кариотипу 47,XXX. В других случаях у больных отмечается гипоплазия яичников, матки, бесплодие, различные степени умственной неполноценности. Увеличение в кариотипе числа Х-хромосом увеличивает проявление умственной отсталости. Такие женщины чаще, чем в общей популяции страдают шизофренией.

Варианты полисомий с участием У-хромосом более многочислены и многообразны. Наиболее частый из них – синдром Клайнфельтера – обусловлен увеличением общего числа хромосом до 47 за счет Х-хромосомы. Больной мужчина (наличие У-хромосомы доминирует при любом количестве Х-хромосом) отличается высоким ростом, женским типом строения скелета, инертностью и умственной отсталостью. Генетический дисбаланс обычно начинает проявляться в период полового созревания, недоразвитием мужских половых признаков. Яички уменьшены в размерах, наблюдается аспермия или олигоспермия, часто гинекомастия. Надежным диагностическим признаком синдрома служит обнаружение в клетках мужского организма полового хроматина. Синдром сверхклайн-фельтера (ХХХУ, два тельца Барра), характеризуется большей выраженностью названных признаков, умственная несостоятельность достигает степени идиотии.

Обладатель кариотипа 47, ХУУ – «супер мужчина» отличается импульсивным поведением с выраженными элементами агрессивности. Большое число таких индивидов выявляется среди заключенных.

Гоносомная моносомия встречается намного реже, чем полисомия, и ограничивается лишь моносомией Х (синдром Шерешевского-Тернера). Кариотип состоит из 45 хромосом, половой хроматин отсутствует. Больные (женщины) отличаются низким ростом, короткой шеей, шейными боковыми кожными складками. Характерны лимфатический отек стоп, слабое развитие половых признаков, отсутствие гонад, гипоплазия матки и фолопиевых труб, первичная аменорея. Такие женщины бесплодны. Умственная способность, как правило, не страдает.

Случаев моносомии У не выявлено. По-видимому отсутствие Х-хро-мосомы несовместимо с жизнью и особи типа «ОУ» гибнут на ранних этапах эмбриогенеза.

Хромосомные болезни, обусловленные структурными изменениями хромосом, встречаются реже и, как правило, приводят к более тяжелым последствиям: спонтанным абортам, недоношенности, мертворождению, ранней детской смертности.

Термин «инстинкт» чаще применяют к животным: ло­сось, который ищет ручей, где родился; оса-наездник, в точности повторяющая сложное поведение своей давно исчезнувшей прародительницы; молодые ласточки, точно знающие, куда лететь к местам зимовки - все это проявле­ния инстинкта. Человек не очень-то полагается на инстин­кты. На смену им пришли обучение, творчество, культура и сознание. Все, что мы делаем, - это результат наших ре­шений, воли нашего мозга и промывания мозгов нашими родителями. На наш разум нацелены психология и другие социально-общественные науки. Если нашими поступками и делами управляем не мы с вами, а бездушные гены, чем же является наша воля? Социологи и философы давно уже пытаются втиснуть волю личности в рамки какой-нибудь целесообразности: сексуальной - по Фрейду, социально- экономической - по Марксу, классовой - по Ленину, куль­турно-этнической - по Боасу (Franz Boas) и Мид (Margaret Mead), причинно-следственной - по Уотсону (John Watson) и Скиннеру (В. F. Skinner), лингвистической - по Сапиру

(Edward Sapir) и Ворфу (Benjamin Whorf). Более чем на столетие философы завладели умами человечества, убедив всех в том, что наша воля - это продукт общественно-соци­альной рациональной закономерности, и это отличает нас от животных, живущих по инстинктам.

Но в период с 1950 по 1990 год глобальные социальные теории рушились одна за другой. Фрейдизм надорвался на психоаналитическом лечении маниакальных депрес­сий, терпя в течение 20 лет одно поражение за другим. Марксизм завалило Берлинской стеной. Научные доказа­тельства Маргарет Мид оказались подтасовкой фактов и актерской игрой заранее нанятых людей (Freeman D. 1983. Margaret Mead and Samoa: the making and unmaking of an anth­ropological myth. Harvard University Press, Cambridge, MA). Потерпела также фиаско рациональная теория о том, что в основе эмоциональных отношений лежит материальный рационализм. В 1950 году в Висконсине было описано на­блюдение за детенышем обезьяны. Маленькая обезьянка больше всего была привязана и нежно относилась к обезья- не-кукле - первому объекту, который детеныш увидел сразу после рождения, но от которого не получал никаких мате­риальных благ. Первое наше чувство - любовь и привязан­ность к матери - является примером врожденного поведе­ния (Harlow Н. F. et al. 1971. From thought to therapy: lessons from primate laboratory. American Scientist 59: 538-549).

Какую же роль инстинкты играют в нашей жизни? Один из первых психологов Уильям Джеймс (William James) счи­тал, что инстинктов у нас ничуть не меньше, чем у живот­ных, но они скрыты под слоем вторичных поведенческих реакций, хотя и создают основу того, что мы называем при­вычки и навыки. Почти через 100 лет гипотезы Джеймса нашли подтверждение в работах лингвиста Ноама Хомски (Noam Chomsky), который показал, что разговорная речь в равной степени является как продуктом культуры, так и врожденных инстинктов человека. Тут Хомски переклика­ется с Дарвином, определившим речь как «инстинктивную тенденцию к освоению искусства».

Проведя сравнительный анализ многих языков мира, Хомски сформулировал принципы формирования разго­ворной речи, которые можно назвать универсальной грам­матикой. Когда ребенок учится говорить, слова и фразы раскладываются у него в голове по уже готовым полочкам. Это означает, что часть мозга генетически предрасположе­на к усвоению и использованию речи. К сожалению, сло­варный запас не кодируется генами, иначе мы все говорили бы на одном языке. Утверждение Хомски о наследовании способности к устной речи базировалось не на биологиче­ских, а исключительно на лингвистических исследованиях. Он обнаружил некоторые общие закономерности форми­рования фраз, которые усваиваются с раннего детства без какого-либо обучения. Обычно мы этого не замечаем, но даже в возгласах ребенка, который еще не научился гово­рить, уже присутствует своя грамматика, благодаря чему мама может догадаться о том, что ребенок хочет выразить.

Предположение Холмски было подтверждено в последу­ющие десятилетия серией исследований, которые прово­дились не только в области лингвистики. Все сводилось к тому, что для усвоения языка ребенку необходим «языковый инстинкт». Этот термин принадлежит психологу и лингви­сту Стивену Пинкеру (Steven Pinker), о котором говорили как о единственном лингвисте, способном свои лингвисти­ческие знания с успехом применять в литературном твор­честве. Пинкер также старательно собирал и сравнивал все современные и древние языки. Он пришел к выводу о том, что все народы мира говорят на языках, имеющих пример­но одинаковый словарный объем и сходных по граммати­ческой сложности, включая народы, проживающие на за­терянных полинезийских островах еще с каменного века. Если общие грамматические закономерности и теряются в официальной грамматике языка, они прослеживаются в разговорной и жаргонной речи. Как, например, двойное отрицание «никто не должен этого делать», естественное для русского и французского языков, но недопустимое в ан­глийском, все равно используется в повседневной речи и в языке детей. Если мы проследим, как дети коверкают слова, то заметим, что они просто образуют слова в соответствии с существующими грамматическими принципами, хотя от взрослых таких слов они никогда не слышали. В отличие от устной речи, которую ребенок осваивает самостоятельно за несколько лет, процесс обучения правописанию проте­кает гораздо дольше. Ребенку приходится усваивать прави­ла, которые не были заложены от рождения.

Врожденным также является абстрактное восприятие слов. Никто не объясняет ребенку, что «чашка», это не только тот предмет, который сейчас у него в руках, но и все другие похожие предметы, независимо от того, из какого материала они сделаны. Ребенок схватывает это на лету.

Интересно, что в наше время, когда человек стал созда­вать компьютеры, которыми можно управлять с помощью слов, стало еще более очевидно, что прежде чем обучить компьютер языку, в него нужно заложить соответствующую программу не только распознавания, но и грамматического разбора полученной звуковой информации. Другими сло­вами, у компьютера должен быть «инстинкт» к освоению речи. Дети тоже рождаются с заложенной программой, в которой уже четко определены основные грамматические правила формирования речи.

Наиболее яркими доказательствами инстинктивного формирования речи стали примеры образования новых на­речий в результате слияния слов нескольких языков. Один такой пример был описан Дереком Бикертоном (Dereck Bickerton). В XIX веке на Гавайи приехало много иностран­ных рабочих, говорящих на разных языках. Поскольку им нужно было как-то общаться друг с другом, возник суржик из слов и выражений. Это было совершенно дикое смеше­ние языков, происходившее без определенных правил, что затрудняло как изложение мысли, так и ее восприятие. Но все изменилось уже в следующем поколении. В процессе общения между детьми сформировались четкие грамма­тические правила, что сделало язык более эффективным в качестве средства общения. В результате образовалось кре­ольское наречие. Бикертон утверждал, что суржик превра­тился в креольский язык только благодаря инстинктивно­му чувству грамматики у детей, которое уже было утрачено взрослыми.

Другой интересный случай произошел в Никарагуа, где в 1980 году была образована школа-приют для глухонемых детей. Обучение их восприятию речи по губам шло со скри­пом, видимо, потому что этим никто особо не занимался, и дети были предоставлены сами себе. Играя во дворе, дети стали применять язык знаков, частично почерпнутых из общения вне школы, частично придуманных самими деть­ми. Вновь сначала образовался суржик, сложный для вос­приятия участниками беседы. Но бурное развитие языка происходило в среде самых маленьких детей. Через не­сколько лет они сформировали свой язык жестов, который отличался такой же сложностью и строгостью правил, эко­номичностью и эффективностью, как любой другой язык. Хочу обратить внимание, что дети изобрели этот язык, а не были ему обучены. Это еще один пример реализации на практике инстинкта освоения устной речи. Детская спо­собность к усвоению языков, к сожалению, утрачивается с возрастом. Вот почему нам так трудно даются иностран­ные языки, или даже диалекты родного языка. У нас уже нет инстинкта. (Это также объясняет то, что иностранные языки легче изучать в общении, а не по правилам, изложен­ным в учебниках. Информация, воспринимаемая органами слуха, направляется в нужные области мозга, тогда как за­ученные правила слабо связаны с инстинктивным чутьем грамматики.) Мозг не только человека, но и других живот­ных устроен так, что обучение возможно или эффективно только в определенном возрасте. Зяблик, например, мо­жет научиться песне своего вида, только если слышит ее в юном возрасте. Причем песне другого вида птиц он не обучится- еще один пример врожденной предрасполо­женности. Доказательством того, что инстинкт к усвоению грамматики у детей работает только в раннем детстве, мо­жет послужить следующий печальный пример. Не так давно в Лос-Анджелесе из заточения в маленькой комнатушке была вызволена девочка Джени (Genie), где ее продержа­ли родители 13 лет с момента рождения практически без общения с людьми. Она знала только два выражения: «Stop it» (Прекрати) и «No more» (Хватит). После того как ее освободили из этого ада, Джени быстро пополнила свой словарный запас другими словами, но так и не научилась образовывать из них предложения. Период, когда работал инстинкт, был пропущен.

Ложные идеи живут долго, и мнение о том, что речь яв­ляется социальным явлением, под влиянием которого раз­вивается мозг, также не спешит умирать. Уже давно развен­чаны такие классические примеры, как, например, утверж­дение того, что поскольку в языке Хопи нет времен, то и в воображении представителей этого народа нет концепций прошлого и будущего, - это была ошибка ученого, плохо знавшего индейцев Хопи. Тем не менее идея о том, что мозг формируется под влиянием речи, а не наоборот, продолжа­ет владеть умами философов и социологов.

Хопи - группа индейских племен, проживающих в ре­зервациях штата Аризона и до сих пор сохранивших свою культуру.

Исходя из этой концепции, злорадство должно быть присуще только тем народам, в чьих языках присутствует слово, обозначающее это понятие (русским или немцам - Schadenfreude, но не англичанам и американцам) (Pinker S. 1994. Penguin, London).

Наблюдение за собственными детьми поможет убедиться в том, что речь у них развивается в определенной последова­тельности, с ошибками, характерными для детского языка, независимо оттого, насколько часто вы разговариваете с ре­бенком, или он просто слушает прохоясих, лежа в коляске.

В ходе исследований, проведенных с близнецами, было показано, что проблемы, связанные с овладением родным языком, являются наследственными (Dale P. S. et al. 1998.

Genetic influence on language delay in two-year-old children. Nature Neuroscience 1: 324-328). Еще более веские доказатель­ства предоставляют невропатологи и генетики. Люди, пе­ренесшие инсульт, часто теряют дар речи, хотя и продол­жают слышать. Точно известна область мозга, контроли­рующая речь (имеется в виду не мышечная функция языка и гортани, а способность облекать предметы и понятия в форму слов). У большинства людей эта область находится в левом полушарии головного мозга; она задействована даже у глухонемых, изъясняющихся с помощью знаков, хотя в этом случае работают также некоторые области правого полушария (Paulesu Е., Mehler J. 1998. Right on in sign lan­guage. Nature 233-234).

Если один из центров мозга поражается вследствие за­болевания или травмы, возникает дефект речи, называе­мый афазией Брока, - неспособность использовать и по­нимать фразы, кроме самых простых, хотя восприятие смысла отдельных слов сохраняется. Так, страдающий афазией сможет ответить на вопрос «Можно молотком за­бить гвоздь?». Однако ответ на вопрос «Льва загрыз тигр. Кто из них умер?» вызовет у него затруднения, поскольку сначала нужно разобраться в грамматической конструкции первого предложения, а с этим может справиться только строго определенная область мозга. Повреждение другого центра - области Вернике - оказывает почти противопо­ложный эффект: больной произносит бесконечные тира­ды слов, в которых почти отсутствует смысл. Получается так, что в области Брока генерируется речь, а в области Вернике речь обретает смысл. И это еще далеко не все центры мозга, участвующие в управлении речью. Так, есть еще хорошо известная островковая доля большого мозга, поражение которой вызывает дислексию (Carter R. 1998. Mapping the mind. Weidenfeld and Nicolson, London).

Известны два генетических заболевания, влияющих на речь. В случае синдрома Уильямса, когда мутация происхо­дит в гене на хромосоме 11, у детей наблюдается умственная отсталость, но при этом они отличаются живым и богатым языком. Дети не прекращают говорить, они используют длинные слова и сложные предложения. Если попросить их описать какое-нибудь животное, они обязательно вспомнят и опишут какого-нибудь трубкозуба, но никак не кота или собаку. Обладая хорошими способностями к изучению ино­странных языков, они остаются умственно заторможенны­ми. Они как будто специально посланы, чтобы подтвердить пословицу, утверждающую, что молчание - золото.

Другое наследственное заболевание проявляется в об­ратном феномене: ограниченные лингвистические спо­собности при неплохо развитом интеллекте. Синдром, на­званный SLI (Specific Language Impairment - специфиче­ское языковое нарушение), стал ареной сражения ученых. С одной стороны выступали психологи-эволюционисты, считавшие, что в основе поведения лежат генетически на­следуемые инстинкты, а с другой - представители старой школы социологов, рассматривающих мозг как объект вли­яния общества и окружающей среды. В конце концов была найдена причина заболевания - мутация в гене, лежащем на хромосоме 7.

То, что ген существует, было известно и ранее. Тщатель­ное изучение пар близнецов позволило убедиться в явном наследовании дефекта SLI. Было также ясно, что это явле­ние нельзя объяснить родовыми травмами, недостаточнос­тью общения или общей задержкой развития. Если один из близнецов страдал синдромом SLI, то у другого вероятность возникновения этого заболевания в 2 раза превышала слу­чайность, что со всей определенностью указывало на наслед­ственный характер заболевания (Bishop D. V. М. et al. 1995. Genetic basis of specific language impairment: evidence from twin study. Developmental Medicine and Child Neurology 37: 56-71).

To, что ген оказался на хромосоме 7, тоже не было не­ожиданностью. В 1997 году группа ученых из Оксфорда обнаружила на длинном плече хромосомы 7 генетический маркер, один из аллелей которого чаще наблюдался у лю­дей с речевым дефектом SLI. Хотя в основе этих данных лежало изучение лишь одной большой английской семьи, факты были неоспоримы (FisherS. Е. et al. 1998. Localisation of a gene implicated in a sever speech and language disorder. Nature Genetics 18: 168-170).

Так что же тогда было причиной противостояния уче­ных? Спор шел вокруг того, как развивается дефект SLI. Для одних было очевидно, что генетическая мутация ведет к ор­ганическому поражению определенных центров мозга, кон­тролирующих многие речевые функции, включая способ­ность членораздельно произносить слова и правильно их слышать. Согласно этой теории дефект SLI развивается из-за поражения центров анализа информации, полученной по­средством органов слуха, т.е. мозгу для развития не хватает речевого влияния. Другие считали эту теорию совершенно не верной, поскольку помимо очевидных проблем с восприя­тием речи у всех больных был еще один дефект - отсутствие способности усваивать и использовать грамматические пра­вила, что, по их мнению, было причиной заболевания, а не его следствием. Но обе стороны считали, что название «ген грамотности», которым наградили его падкие на сенсации журналисты, слишком примитивно и неправильно отражает чрезвычайно сложную картину заболевания.

История изучения речевого дефекта SLI началась с наблюдений за тремя поколениями английской семьи. Женщина, у которой был речевой дефект, вышла замуж за здорового мужчину и родила четырех дочерей и одно­го сына. Все дети, за исключением одной дочери, также страдали SLI. В третьем поколении этой семьи уже было 24 ребенка, 10 из которых страдали расстройством речи. Семью часто навещали психологи, которые в одиночку и в составе конкурирующих групп осаждали несчастных. Именно анализы крови этой семьи позволили ученым из Оксфорда выявить маркер на хромосоме 7. Группа ученых, работавших в Оксфорде в тесном сотрудничестве с лондон­ским Институтом здоровья детей (Institute of Child Health), принадлежали к старой школе и считали синдром SLI де­фектом развития мозга из-за проблем с сенсорным воспри­ятием речи. Оппонентом, защищавшим теорию «граммати­ческого ядра мозга», выступила канадский лингвист Мирна Гопник (Myrna Gopnik).

Еще в 1990 году Гопник заявляла, что проблемы в ан­глийской семье и у других больных с речевым дефектом SLI возникают из-за того, что они не могут усвоить базовые грамматические правила языка. Дело не в том, что они не могут их понять. Напротив, они способны заучить правила грамматики и применять их. Но поскольку им постоянно приходится вспоминать правила, вместо того чтобы вы­бирать нужные формы слова инстинктивно, они говорят медленно и с большим трудом. Например, когда тестирую­щий показывает картинку с изображением какого-то суще­ства и говорит: «Это Ваг», а затем показывает картинку с двумя такими существами и подписью «Это...», следует от­вет: «Ваги». Так отвечают все, но не больные с синдромом SLI, а если и отвечают, то только после непродолжитель­ного размышления. Кажется, что они не знают, как обра­зовать множественное число от единственного. В своей речи больные с синдромом SLI используют слова во мно­жественном числе, поскольку помнят их, но, столкнувшись с незнакомым словом, заходят в тупик. Зато потом, усвоив принцип, пытаются образовать множественное число от слова, которое другие оставили бы неизменным, например: если существо назвали «Теди», то два существа они назовут «Тедии». Гопник предположила, что больные с синдромом SLI сохраняют в памяти все формы слов, а не образуют их интуитивно (Gopnik М. 1990. Feature-blind grammar and dys­phasia. Nature 344: 715).

Безусловно, проблема не ограничивается только об­разованием форм множественного числа слов. Сюда до­бавляются прошедшее время, пассивная форма глаголов, всевозможные наклонения, суффиксы, словосочетания и использование многочисленных правил грамматики, ко­торые мы сами часто не помним, но находим правильные формы благодаря инстинктивному чутью. Однако у боль­ных с речевым дефектом SLI этого чутья нет. После того как Гопник опубликовала результаты своих исследований, проведенных с членами все той же английской семьи, она подверглась массированной атаке критиков. Оппоненты утверждали, что все трудности с речью гораздо проще можно объяснить проблемами, связанными с системами воспроизведения речи, чем фантазировать о врожденном чувстве грамматики. «Факт, что люди с речевым дефектом SLI неправильно используют множественное число и про­шедшее время, ввел Гопник в заблуждение, - писали крити­ки. - В статье Гопник не указала на то, что члены этой семьи страдали очень серьезным врожденным дефектом речи, ко­торый вел не только к возникновению сложностей с грам­матикой, но и проявлялся в бедности словарного запаса и ограниченности семантических способностей. У них были проблемы с пониманием любых сложных речевых оборо­тов» (Fletcher Р. 1990. Speech and language deficits. Nature 346: 226).

В критике прослеживалась также обида на то, что кто- то пасется на чужом поле - английская семья с речевыми дефектами была открыта не Гопник, как она смеет лезть со своими теориями туда, где уже давно все исследовано? Но, критикуя Гопник, ее оппоненты сами подтверждали пра­вильность ее теории. Ведь для образования сложных ре­чевых оборотов как раз и нужна грамматика. А так получа­лось логическое противоречие: проблемы с грамматикой у больных с синдромом SLI возникают из-за того, что в своей речи они допускают грамматические ошибки.

Гопник была не из тех, кто отступает. Используя тот же набор приемов и тестов, она продолжила исследования синдрома SLI у людей, разговаривающих на других языках: японцев и греков. Вскоре она вновь показала, что пробле­мы лежат именно в плоскости основных принципов грам­матики. Например, в греческом языке есть слово «ликос», что означает волк, и «ликантропос» - оборотень, или че­ловек-волк. Буквосочетание «лик» является корнем слова волк, но самостоятельно оно никогда не употребляется. Если нужно образовать сложное слово, окончание «ос» (буква «с», если вторая часть сложного слова начинается с согласной, отбрасывается). Это правило интуитивно чув­ствуют не только греки. Поэтому мы правильно используем и образуем слова, в основе которых лежат греческие кор­ни, например «технофобия».

Но это простое правило с трудом дается грекам с синдро­мом SLI. Они знают слова «ликофобия» и «ликантропос», но не замечают того, что они составные, поэтому не могут сво­бодно образовывать новые слова на основе известных им корней. Чтобы говорить, больным SLI приходится хранить в памяти весь набор слов и их форм. Гопник пишет: «Мы мо­жем представить их как людей без родного языка». Они с таким же трудом изучают свой родной язык, как мы изучаем иностранный, постоянно вспоминая чуждые нам словосо­четания и грамматические правила (Gopnik М. et al. Г996. Genetic language impairment: unruly grammars. Гп: Runciman W. G., Maynard Smith J., Dunbar R. Г. M. (eds). Evolution of so­cial behaviour patterns in primates and man, p. 223-249. Oxford University Press, Oxford; Gopnik M. (ed.) Г997. The inheritance and innateness of grammars. Oxford University Press, Oxford).

Гопник признает, что у некоторых больных с синдро­мом SO действительно были низкие показатели коэффи­циента IQ, установленного по неразговорным тестам, но у других эти показатели были выше среднего уровня. Так, в одной паре разнояйцовых близнецов у брата с речевым дефектом SU коэффициент IQ по неразговорным тестам был выше, чем у его здорового брата. Гопник также призна­ет, что у больных с синдромом SLI всегда есть проблемы со слухом и произношением слов, но она утверждает, что это вторичное явление. Например, ее пациенты легко разли­чали и правильно употребляли слова «ball» (мяч) и «bell» (колокол), но часто вместо «fell» (упал) говорили «fall» (па­дать) - они допускали грамматические ошибки, а не про­сто путали слова. Гопник была возмущена, когда один из ее оппонентов, имея в виду все ту же английскую семью со случаями синдрома SLI в трех поколениях, сказал, что со стороны может показаться, будто говорят необразованные или опустившиеся люди. Проведя много времени в этой семье и приняв участие в их многочисленных семейных торжествах, Гопник утверждает, что в общении это умные и интеллигентные люди.

Чтобы проверить версию о вторичности слуховых и ар- тикулярных проблем у больных с синдромом SLI, 1Ъпник разработала систему письменных тестов. Например, она предлагала выбрать из двух предложений неправильное: «Не was very happy last week when he was first» (Он был рад тому, что выиграл на прошлой неделе) и «Не was very hap­py last week when he is first» (Он был рад тому, что выигры­вает на прошлой неделе). Для большинства людей вполне очевидно, что второе предложение написано с ошибкой. Но больные с синдромом SLI считали, что ошибки нет ни в одном из предложений. Вряд ли это явление можно объ­яснить проблемами со слухом или с произношением слов (Gopnik М., Goad Н. 1997. What underlies inflectional error patterns in genetic dysphasia? Journal of Neurolinguistics 10: 109- 138; Gopnik M. 1999. Familial language impairment: more English evidence. Folia Phonetica et Logopedia 51: 5-9).

Сторонники артикулярно-слуховой теории выдвинули свои аргументы. Недавно было показано, что у больных с синдромом SLI проявляется дефект «звукового маскирова­ния», который состоит в том, что они не различают звук сигнала, если этот звук сопровождается посторонними шумами. Сигнал приходилось делать на 45 децибел громче того уровня, который подходил для здоровых людей. Други­ми словами, у таких больных затруднено восприятие речи, поскольку они слышат голос, но плохо различают оконча­ния слов и интонацию, с которой они произносятся.

Данное открытие не столько опровергает теорию о «грамматической» основе афазии, сколько указывает на бо­лее интересное эволюционное объяснение обнаруженных закономерностей: мозговые центры, отвечающие за раз­говор и слух, тесно взаимосвязаны, а также связаны с цен­тром, отвечающим за грамматическое чутье языка, и все эти центры страдают при синдроме SLI. Позже было уста­новлено, что речевой дефект SLI возникает в результате органического поражения строго определенной области мозга на третьем триместре беременности. Это поражение связано с активностью дефектного белка, кодируемого ге­ном на хромосоме 7. Магнитно-резонансное обследование больных подтвердило наличие пораженных участков моз­га. Не удивительно, что эти участки находились в двух рече­вых областях мозга: области Брока и области Вернике.

В мозгу обезьян также есть центры, соответствующие ре­чевым областям человека. Нервные клетки в области Брока у обезьян контролируют работу мимических и гортанных мышц, а также языка. Клетки в области Вернике отвечают за распознавание голосовых сигналов в стае обезьян. Это как раз те нелингвистические проблемы, с которыми стал­киваются больные с синдромом SLI: произношение слов и их слуховое восприятие. У предков людей речевые центры возникли на основе более древних центров, отвечающих за воспроизведение и анализ звуков, которые в свою очередь тесно связаны с центрами слуха и управления мускулатурой лица и гортани. Речевые центры развились как надстройка над всей этой системой, заключив в себе инстинкт грамма­тики: способность к манипулированию наборами слов в со­ответствии с грамматическими правилами. Отсутствие до­полнительных центров не позволяет другим человекообраз­ным обезьянам научиться говорить. Об этом можно судить по результатам многочисленных длительных и трудоемких экспериментов ученых, увлеченных идеей научить обезьян разговорной речи. И хотя все они потерпели неудачу, был собран обширный материал, однозначно подтверждающий тот факт, что речь органически вплетена в функции произ­ношения и восприятия звуков. (Тем не менее эта связь до­вольно гибкая - у глухонемых ядра мозга, ответственные за грамматику и язык, переключаются на совместную работу с другими участками мозга, отвечающими за зрительное вос­приятие и распознавание знаков.) Генетический дефект по­ражает все три области мозга - ответственные за грамма­тику, произношение и восприятие слов (Pinker S. L994. The language instinct: the new science of language and mind. Penguin, London).

Сейчас представление о назначении центров Брока и Вернике у обезьян несколько изменилось. Скорее всего, у обезьян эти центры не были связаны с восприятием и обработкой звуков. Их назначение состояло в восприя­тии и передаче сообщений с помощью мимики и жестов. Именно язык глухонемых был первым языком предков человека. Жестикуляция сопровождалась звуками, кото­рые затем стали основным носителем информации. Это случилось довольно неожиданно в результате мутации в гене FOXP2 на хромосоме 7, которая произошла при­мерно 100 ООО лет назад - время появления на Земле ви­да Homo sapiens (Gentilucci М., Corballis М. С. 2006. From manual gesture to speech: a gradual transition. Neuroscience and Biobehavioral Review. К моменту перевода этой книги статья еще находилась в печати, но препринт доступен на сайте журнала).

Нельзя придумать лучшего подтверждения предполо­жению Уильяма Джеймса, которое он сделал еще в XIX столетии: сложное поведение человека сформировалось в процессе эволюции за счет добавления новых инстинктов, а не за счет вытеснения инстинктов предков благодаря обу­чению. Теория Джеймса нашла подтверждение в конце 80-х годов XX столетия в работах психологов-эволюционистов. Наиболее выдающиеся среди них - антрополог Джон Туби (John Tooby), психолог Леда Космидес (Leda Cosmides) и психолог-лингвист Стивен Пинкер (Steven Pinker). Их идея состояла в следующем: «Основная цель общественно-соци­ологических наук XX столетия заключалась в выявлении фактов влияния социальных условий на наше поведение. Мы хотим перевернуть проблему с головы на ноги и уста­новить, как врожденные социальные инстинкты человека управляли общественно-социальным развитием общества». Например, то, что все люди улыбаются от удовольствия или хмурятся при неприятностях, а также то, что мужчины на­ходят молодых женщин более сексуальными, объясняют на­личием врожденных инстинктов, а не влиянием обществен­ных традиций. Другими примерами инстинктов могут быть романтическая любовь в юности и религиозные верования, присущие всем народам. Согласно теории Туби и Космидес культура является продуктом человеческой психологии, но не наоборот. Было огромной логической ошибкой противо­поставлять обучение инстинктам, так как в основе способ­ности учиться лежат врожденные инстинкты, определяю­щие тенденции выбора не только способа обучения, но и предмета обучения. Например, обезьян (да и людей тоже) гораздо проще научить опасаться змеи и убегать от нее, чем научить их бояться бабочек. Все же для реализации врожденных способностей обучение необходимо. Боязнь змеи - это инстинкт, который реализуется через обучение (Mineka S., Cook М. 1993. Mechanisms involved in the obser­vational conditioning of fear. Journal oj Experimental Psychology, General 1 22: 23-38).

В чем же состояла «эволюционность» идей эволюцион­ных психологов? Они не касались вопросов происхожде­ния инстинктов в результате изменчивости и не рассма­тривали механизмов естественного отбора инстинктов. Эти вопросы, безусловно, важны и интересны, но чрез­вычайно сложно проследить эволюцию мозга человека, поскольку она происходила медленно, не оставляя явных следов в окаменелостях наших предков. Эволюционизм данной группы исследователей концентрировался на тре­тьей парадигме Дарвина - эволюции с целью адаптации к условиям окружающей среды. Чтобы разобраться, как ра­ботает орган, нужно понять «суть» его компонентов. Точно так же мы поступаем, когда хотим понять работу сложного механизма. Стивен Пинкер на лекциях доставал из кармана непонятное устройство и объяснял назначение его отдель­ных элементов, после чего становилось ясно, что устрой­ство предназначено для извлечения косточек из маслин. Леда Космидес с той же целью использовала швейцарский ножик с множеством лезвий и других устройств и на этом примере демонстрировала диалектику связи функций от­дельных элементов с общим назначением предмета иссле­дований, и наоборот. Невозможно разобраться в работе фотоаппарата, если не знать, что он служит для получения изображений на фотопленке путем фокусирования лучей света. Бессмысленно также объяснять устройство объек­тива, не упомянув, что в природе глаз используется почти с той же целью. Линкер и Космидес доказывали, что этот принцип применим и при изучении мозга человека. Ядра мозга, так же как разные лезвия швейцарского ножика, предназначены для выполнения определенных функций. Альтернативная теория, одним из сторонников которой является Хомски (Chomsky), рассматривает мозг как про­стую сеть нейронов и синапсов. Ее усложнение происходит не под контролем генов, а в соответствии с физическими и статистическими законами. Но теории пока не достает четких объяснений того, как хаотические процессы само­развития приводят к образованию сложных структур, наце­ленных на решение строго определенных задач.

По иронии судьбы именно сложность организации жи­вых организмов была аргументом противников теории эво­люции на протяжении первой половины XIX столетия. Так, Уильям Палей (William Paley) говорил: «Если вы найдете ка­мень на земле, то вряд ли зададитесь вопросом, откуда он здесь появился; но если найдете часы, вы будете уверены, что где-то в этих краях живет часовщик. Так и изысканная сложность и функциональность, свойственные всем жи­вым организмам, являются лучшим доказательством суще­ствования Бога». Гениальность Дарвина заключалась в том, что в основном аргументе против эволюции - невероят­ной сложности живых существ - он увидел столь же явное подтверждение эволюционного процесса. Эволюционист и рьяный дарвинист Ричард Докинз (Richard Dawkins) пи­сал: «Слепого часовщика зовут естественный отбор. Шаг за шагом в течение миллионов лет из миллионов разнообраз­ных индивидуумов отбираются наиболее приспособлен­ные особи, что ничуть не хуже объясняет многообразие и сложность современных организмов» (Dawkins R. 1986. The blind watchmaker. Longman, Essex).

Языковой инстинкт, которым все мы наделены, - это как раз пример сложной эволюционной адаптации. Благодаря дару речи наши предки могли предельно ясно и в мельчай­ших подробностях обмениваться информацией, недоступ­ной никаким другим видам животных. Не трудно предста­вить, насколько это было важно и полезно для выживания в африканской саване: «Пройди немного вперед по этому ущелью и поверни налево у большого дерева, там увидишь тушу жирафа, которого мы только что убили. Но будь вни­мательным, у кустов по правую сторону мы заметили спя­щего льва». Два предложения с неоценимой информацией, столь необходимой для выживания того, кто слушает. Два счастливых билета в лотерее естественного отбора, кото­рые будут упущены индивидуумом, не владеющим языком и грамматикой.

Открытие того, что грамматика является врожденным инстинктом человека, было ошеломляющим. У языкового инстинкта есть свой ген, лежащий на хромосоме 7, кото­рый выполняет по крайней мере часть работы по форми­рованию определенных участков мозга зародыша, делая их чувствительными к восприятию и пониманию речи. Но нам до сих пор неизвестно, как этот ген выполняет свою работу. Идея того, что какой-то ген может непосредствен­но влиять на усвоение грамматических правил, многим со­циологам до сих пор кажется вздорной. Несмотря на нали­чие многочисленных экспериментально подтвержденных фактов, они продолжают считать, что ген на хромосоме 7 влияет на речь опосредованно, нарушая слуховые функции мозга. Такое неприятие вполне объяснимо: на протяжении столетия доминировали представления о том, что инстин­кты остались у животных предков, а у людей они вытесне­ны обучением. Представление о том, что обучение - это проявление инстинкта, многих повергает в шок.

В этой главе я познакомил вас с аргументами психологов- эволюционистов - приверженцев новой, бурно развиваю щейся дисциплины, в основе которой лежит анализ эволю­ционной приспособленности мозговых центров с целью изучения общих закономерностей поведения и психики людей. Во многом это перекликается с целями и задачами ученых, занимающихся генетикой поведения (подробно об этих исследованиях мы говорили в главе 6). Существенное различие заключается в подходах к проблеме, из-за чего между представителями этих двух направлений часто воз­никают горячие диспуты. Генетика поведения ищет раз­личия между индивидами, а затем пытается объяснить это различие с точки зрения варьирования генов. Психологи- эволюционисты нацелены на поиск и изучение того, что яв­ляется общим в поведении и психологии и характерно или присуще от рождения всем людям. Всечеловеческая общ­ность этих явлений и закономерностей предполагает от­сутствие какого-либо варьирования на уровне генов. Такое единообразие можно объяснить тем, что естественный от­бор отсеивал любые вариации в генах, контролирующих основы человеческого поведения и способности к обще­нию и обучению. Психологи-эволюционисты утверждали, что даже если генетикам, изучающим поведение людей, удается найти разные варианты одного гена, то это значит, что данный ген - не самый важный у человека. На это гене­тики отвечали, что все известные гены изменяются с неко­торой частотой, поэтому вряд ли психологам когда-нибудь удастся найти такие «важные» гены, которые смогут объяс­нить общечеловеческие закономерности психологии.

Скорее всего, дальнейшие исследования примирят пред­ставителей этих двух направлений, показав, что их противо­речия проистекали от недостатка знаний о работе мозга и генома. Просто одни начали свой путь к истине с изучения генетики базовых общечеловеческих признаков, а другие приступили к изучению индивидуальных различий между людьми. Но общечеловеческие качества оказываются из­менчивыми, если провести сравнение человека с другими животными. Если у всех людей есть языковой инстинкт, хотя способность к языку может варьировать, то у обезьян его просто нет. Несмотря на индивидуальную изменчивость способности к разговорной речи, языковой инстинкт явля­ется характерным общечеловеческим признаком. Даже у больных с речевым дефектом SLI языковые способности не­соизмеримо выше, чем у натренированных шимпанзе и го­рилл, которых ученые пытались обучить речи долгие годы.


У далеких от науки людей теории врожденных инстин­ктов и наследуемого поведения человека вызывают скепти­цизм и недоверие. Как может ген, строка «букв», управлять поведением людей? Как можно объяснить связь между бел­ком и способностью человека к изучению грамматических правил? Я согласен, что до сих пор в учении о наследова­нии поведения больше веры, чем научных результатов. Но направление дальнейших исследований уже определено. У генетики поведения много общего с генетикой эмбриональ­ного развития. Скорее всего, каждый мозговой центр раз­вивается под управлением химических веществ, градиенты концентрации которых образуют своеобразную химиче­скую дорожную карту наподобие того, как развиваются все остальные органы эмбриона. Градиенты химических ве­ществ, в свою очередь, являются продуктами метаболизма, т.е. появляются в результате работы определенных генов. Но все еще трудно понять, как гены узнают, где в организме и когда им следует включиться в работу. Управление генами на уровне генома - одна из самых увлекательных областей современной генетики. Подробнее эта тема будет раскры­та, когда речь пойдет о хромосоме 12.